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1 Introduction

In the canonical framework of optimal income taxation originally developed by Mirrlees

(1971), the primary challenge facing tax policy stems from the presence of asymmetric

information between the government and private individuals. The government’s goal is

to redistribute resources based on the innate productive abilities of individuals. How-

ever, since these abilities remain unobservable for tax purposes, the government resorts

to taxing income and other observable measures that can serve as proxies for these unob-

served abilities. This leads to the introduction of second-best solutions, where incentive

compatibility considerations justify the introduction of distortions, often in the form of

positive marginal tax rates. These distortions facilitate targeted transfers to low-income

individuals while providing incentives for high-income individuals to exert labor e↵ort.

The prevailing optimal tax literature has largely overlooked a crucial aspect of tax

policy design: in addition to the standard information asymmetry between the govern-

ment and private agents emphasized in traditional optimal tax theory, there is a second

layer of information asymmetry between workers and employers. As economists have rec-

ognized since the seminal contributions of Spence (1973) and Akerlof (1976), asymmetric

information in the labor market profoundly shapes the dynamics of interactions between

workers and firms and can contribute significantly to market ine�ciencies. This asym-

metry implies that employers cannot accurately gauge the productivity of workers, and

as a result, even in a competitive labor market, workers may not receive compensation

commensurate with their marginal productivity. Instead, the wage distribution becomes

endogenous, influenced by the screening and signaling methods available to employers and

workers alike.

Two recent papers extend Mirrlees’ framework by introducing a second layer of asym-

metric information between workers and employers, focusing on how firms screen workers

based on their choices about working hours. Stantcheva (2014) explores the implications

of adverse selection in the labor market for the optimal design of income taxes, showing

that firms’ use of hours and compensation as screening tools can help governments achieve

redistributive goals by counteracting the adverse responses of high-skilled workers to pro-
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gressive taxation. Bastani et al. (2015), using a similar screening framework, examines

how progressive income tax schedules can a↵ect wage distribution by promoting bunching

or pooling across worker types.

This paper develops a framework for evaluating optimal redistributive policies in the

presence of multidimensional educational signaling, where workers signal their produc-

tivity through both the quantity and quality of their education. Our contributions are

fourfold: (i) we provide a theory of optimal redistribution that addresses the complexi-

ties of multidimensional educational signaling; (ii) we show that a max-min optimal tax

code can achieve predistribution by pooling the wages of workers with di↵erent skill levels

conditional on income; (iii) we derive su�cient conditions under which the max-min op-

timum leads to either pooling or separating equilibria, highlighting that in a separating

equilibrium incentive constraints between two types can bind in both directions simulta-

neously, an aspect that has been underexplored in the literature; and (iv) we explore the

policy instruments necessary to implement these results, focusing on a nonlinear income

tax together with a piecewise linear education subsidy schedule. A key insight is that

achieving predistribution requires complementing the income tax with policies that limit

signaling opportunities and prevent high-skilled individuals from fully separating from

their low-skilled counterparts.

While the current paper shares the feature of a second layer of asymmetric information

with the two studies mentioned above, it di↵ers from them in at least five ways. First,

we focus on worker signaling through investment in education. Despite its central role in

economics, its prominence in economics curricula around the world, and its relevance in

policy discussions (e.g., Caplan 2018), it is surprising that signaling has been addressed

in only a few papers in the vast literature on optimal tax design since the seminal work

of Mirrlees (1971).1 Second, we consider multidimensional signaling in the context of

1Two early papers discussing signaling in the context of taxation are Spence (1974) and Manoli

(2006). More recently, Craig (2023) studies signaling in the context of human capital investment and the

design of optimal income taxation in a di↵erent setting where employers make Bayesian inferences about

workers’ productivity and the equilibrium wage is a weighted average of the worker’s own productivity

and the productivity of other similar workers. Sztutman (2024) studies optimal taxation in a dynamic job

3



taxation, which allows us to retain the realistic Mirrleesian feature that firms are more

informed about workers than the government. Third, we consider tax systems that depend

not only on income but also on the signals that the government can observe in the labor

market.2 Fourth, in line with Bastani et al. (2015) but in contrast to Stantcheva (2014),

we emphasize the important role of redistribution through the wage (as opposed to the

income) channel.3 Finally, in contrast to Stantcheva (2014), we show that the presence

of adverse selection due to asymmetric information between firms and workers does not

necessarily lead to a higher level of welfare in the social optimum than that achieved in a

Mirrleesian setup where worker types are observable by firms.

The details of our analysis are as follows. Consistent with the prevailing literature

on optimal income taxation, we assume that workers di↵er in their intrinsic productive

capabilities, which are unobservable to the government. However, unlike most studies

in this area, and in line with the two studies discussed above, we extend this unobserv-

ability to potential employers. The distinguishing feature of our analysis is that workers

must signal their productivity to firms by making costly e↵ort decisions, allowing for in-

formation transmission between workers and firms along two dimensions: the quantity

(e.g., years of schooling) and the quality (e.g., the di�culty or intensity of a particular

educational pathway) of their education. While quantity is observable to both the govern-

ment and employers, quality is only observable to employers, reflecting an environment

in which employers have better information than the government. To make signaling fea-

sible, we assume that workers di↵er not only in their innate productive abilities but also

in their costs of signaling (e.g., the cost of obtaining education), with signals representing

signaling model where the career profile of labor supply conveys information about worker productivity.

2The taxation of signals has received surprisingly little attention in the optimal income tax literature.

The only previous paper that we are aware of that explicitly discusses the taxation of signals is Andersson

(1996).

3Notably, predistribution can occur even when production technology is linear and skill types are

perfect substitutes, as in Mirrlees (1971). This di↵ers from models where redistribution through the

wage channel arises from sectoral reallocation of labor in general equilibrium contexts (see, for example,

Stiglitz 1982, Rothschild and Scheuer 2013, and Sachs et al. 2020).
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components of educational e↵ort that realistically also increase human capital.4

Adopting a framework that captures the equity-e�ciency tradeo↵, similar to the two-

type Stiglitz (1982) version of the Mirrlees (1971) optimal income tax model, we analyze

constrained e�cient (max-min) allocations that combine taxes on both income and ob-

servable signaling activity. By invoking the revelation principle, we solve for the optimal

direct revelation mechanism and characterize feasible and incentive-compatible alloca-

tions. In most of our analysis, we assume that the signal observable to the government

is the one in which the low type has a comparative advantage. However, we also discuss

what happens in situations where neither signal is observable, where both signals are

observable, and where the signal in which the high type has a comparative advantage is

observable. We also briefly discuss some extensions of our analysis, such as the cases of

more than two signals and more than two types.

We begin by defining the Perfect Bayesian Equilibria (PBE) of the signaling game in

the presence of a general tax function, including laissez-faire as a special case. The PBE

consists of strategies for workers (educational choices) and employers (wage o↵ers), along

with employers’ beliefs about workers’ productivity, which are updated in a Bayesian-

consistent manner based on observed signals. We then apply equilibrium refinement

along the lines of Grossman and Perry (1986) and characterize the labor market equi-

librium in the presence of taxes, recognizing that it can be given by either a separating

tax equilibrium (STE), where workers earn di↵erent levels of income and exert di↵erent

levels of educational e↵ort, or a pooling tax equilibrium (PTE), where all workers earn

the same income and exert the same observable level of e↵ort. We recognize that the

richness of the tax function plays a key role in supporting the existence of equilibrium

and in determining whether a predistributive PTE is achievable.

We then characterize the constrained e�cient allocation assuming a max-min social

objective, called the max-min optimum (MMO), and show that it is given by either an

STE or a PTE, depending on which equilibrium configuration produces the highest level

4Our model is thus related to the literature on optimal income taxation in the presence of human

capital investment and learning-by-doing, see, for example, Stantcheva (2017).
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of social welfare. We derive necessary and su�cient conditions for the MMO to feature

predistribution, emphasizing the role of both di↵erences in agents’ innate productivities

and di↵erences in the costs of signaling. Note that in our setting, incentive constraints

can flow from low- to high types as well as from high- to low types. Low types may have

an incentive to invest more in signaling in order to qualify for higher compensation, while

high types may have an incentive to mimic low types in order to qualify for a more lenient

tax treatment.

Our study highlights a key policy insight: when workers signal their productivity

through their educational choices, the government can use a complementary wage channel

for redistribution, namely predistribution. Crucially, achieving predistribution requires

augmenting the income tax system with additional policy instruments that directly regu-

late the flow of information between workers and firms and prevent high-skilled individu-

als from separating themselves from their low-skilled counterparts. Our formal analysis,

detailed in Online Appendix H, shows that, in our setting, predistribution cannot be

achieved by an income tax system in isolation.

The policy framework required to implement the MMO (whether provided by an STE

or a PTE) can take several forms. We propose two simple implementation schemes that

combine a nonlinear income tax with income-tested education subsidies or mandates. A

nonlinear income tax system—in practice often piecewise linear with multiple brackets

—encourages individuals to locate at targeted income levels. Income-tested subsidies and

mandates, on the other hand, ensure that higher-ability individuals are not incentivized

to deviate from their lower-ability counterparts by choosing lower levels of education (i.e.,

lower quantity e↵ort) conditional on income level. The design of income-tested education

subsidies and mandates is driven by the need to provide the right incentives locally—at a

given income level—without distorting the incentives to acquire education at other income

levels.5

5Education subsidies have traditionally been used to correct market failures and redistribute income.

In the optimal tax literature, they serve two primary functions: i) to mitigate the negative e↵ects of

income taxation on human capital formation, and ii) to enhance redistribution. See, for example, Ulph

(1977), Tuomala (1986), Boadway and Marchand (1995), Brett and Weymark (2003), Bovenberg and
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If the MMO is implemented as an STE, workers earn di↵erent income levels and exert

di↵erent levels of educational e↵ort. In this scenario, type-2 mimickers are pooled with

low-skilled workers o↵ the equilibrium path. A means-tested subsidy on the observable di-

mension of educational e↵ort, in which low-skilled workers have a comparative advantage,

serves to discourage high-skilled mimickers from separating themselves from their low-

skilled counterparts at the lower income level, while avoiding distorting e↵ort choices at

the higher income level. This logic parallels models of optimal mixed taxation (combining

income and goods taxes) where low-skilled and high-skilled workers have di↵erent con-

sumption preferences (see, for example, Blomquist and Christiansen 2008). Using income

taxes to finance subsidies for goods favored by low-skilled workers can achieve redistribu-

tion at a lower e�ciency cost than income taxes alone, because it allows distinguishing

between truly low-skilled and high-skilled workers, conditional on income.

If the MMO is implemented as a PTE, all workers earn the same income and exert

the same observable level of e↵ort, aligning their choices along the equilibrium path.

Here, implementation requires a kink in the income tax schedule. Since there is no

redistribution through income taxation in a PTE, the role of the tax schedule is to support

the pooling equilibrium and thereby help achieve predistribution. The role of means-tested

education subsidies in this context is to discourage high-skilled workers from di↵erentiating

themselves from low-skilled counterparts by opting for lower levels of educational e↵ort

o↵ the equilibrium path. This is achieved by subsidizing e↵ort levels below the common

equilibrium e↵ort, which e↵ectively imposes a marginal tax on downward deviations. We

propose the simplest way to deter such deviations by high-skilled mimickers, namely, to

complement the nonlinear income tax system with a binding education mandate that sets

a lower bound on educational e↵ort.

While it is well known that kinks in the income tax schedule can bunch individuals with

Jacobs (2005), and Maldonado (2008). Some studies, such as Blumkin and Sadka (2008), also explore the

possibility of education taxes due to the positive correlation between education and unobserved ability.

More recently, Findeisen and Sachs (2016) examines income-contingent student loans and suggests that

it may be optimal for very high-income individuals to repay more than the value of their loans, e↵ectively

creating an education tax.
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di↵erent labor productivity at the same pre-tax income, resulting in identical after-tax

incomes (which can sometimes serve redistributive purposes, see, e.g., Ebert 1992), our

study emphasizes that combining these kinks with education mandates can also induce

bunching at the education choice. This, in turn, induces wage bunching conditional

on income and achieves redistribution through wage compression. Although a pooling

equilibrium compresses all income levels into a single outcome, the broader insight extends

to more complex scenarios involving multiple types and equilibria with partial bunching or

full separation. At each income level along the equilibrium path, income-tested education

subsidies or mandates can be used to enforce bunching both on and o↵ the equilibrium

path.

The paper is organized as follows. In section 2, we outline the structure of the game,

the equilibrium concept that we use, and the role of government in the economy. We

then define the STE and PTE in the presence of a general tax function, and describe the

government optimization problem and the concept of MMO. In section 3, we characterize

the optimal wedges associated with the MMO. In section 4, we discuss how these wedges

can be implemented using means-tested education subsidies or mandates. In section 5, we

discuss alternative observational assumptions and some robustness and extensions of the

basic setup. Section 6 concludes. Most of our formal derivations and proofs are relegated

to the Online Appendix.

2 The model

Consider an economy with a competitive labor market consisting of two types of workers:

low-skilled, denoted by i = 1, and high-skilled, denoted by i = 2, who di↵er in their

innate ability. Let 0 < �i < 1 denote the proportion of workers of type i in the population

(normalized to a unit measure, without loss of generality).

We build on the basic insights of the Mirrlees (1971) framework, which examines

how a planner designs a nonlinear tax schedule T (y) based on observed income y. A

widely accepted interpretation of the Mirrlees model is that income directly equals output,

justified by the assumption of a competitive labor market in which firms perfectly observe
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workers’ productivity and compensate them accordingly. Our paper departs from this

standard interpretation by relaxing the assumption that worker productivity is perfectly

observed and compensated by firms. More broadly, we challenge the equivalence between

income and worker output, motivated by scenarios where firms cannot directly observe

or contract with workers based on their actual output. The central innovation of our

approach is the introduction and analysis of two layers of asymmetric information: one

between the government and private agents, and another between workers and firms.6

Workers exert costly e↵ort that serves the dual purpose of (i) increasing worker pro-

ductivity and (ii) signaling innate ability. Our model is general, but for concreteness we

focus on educational attainment, which is interpreted as educational e↵ort prior to en-

tering the labor market. In line with this interpretation, workers are first movers in the

interaction with firms.

We consider educational attainment along two dimensions. The first is denoted by

es and represents the quantity of e↵ort. The second dimension is denoted by eq and

represents the intensity of e↵ort. For example, in the context of education, the variables

es and eq would capture the quantity (e.g., time spent acquiring vocational training and/or

academic degrees) and quality (e.g., GPA, reputation of certifying institution, interviews,

and letters of recommendation) dimensions of educational attainment, respectively. Our

main focus will be on the case where es is observed by both the government and the firms,

while eq is only observed by the firms (or is prohibitively costly for the government to

observe). However, in subsections 5.1-5.3 we will also briefly discuss the implications of

other observability assumptions.

The output of a worker of type i is given by the production function:

(1) zi = h(eis, e
i
q)✓

i,

where h(·) is jointly strictly concave and strictly increasing in both arguments and rep-

resents the acquired human capital; and ✓i denotes the innate productive ability of

6Other papers exploring two layers of asymmetric information in optimal policy design include

Stantcheva (2014), Bastani et al. (2015, 2019), Craig (2023), and Sztutman (2024).
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type i, where ✓2 > ✓1. In addition, we define ✓̄ = �1✓1 + �2✓2 as the average pro-

ductivity of workers. We further assume that the Inada conditions are satisfied, i.e.,

limes!0+
@h
@es

= limeq!0+
@h
@eq

= 1 and limes!1
@h
@es

= limeq!1
@h
@eq

= 0. We define the wage

rate earned by a given individual as the ratio of pre-tax income, denoted by y, and the

value of the h function evaluated at the e↵ort vector chosen by the individual. We will

also denote by h1 and h2 the first derivative with respect to the first and second arguments

of h, respectively. The utility function is

(2) ui(c, es.eq) = c�Ri(es, eq),

where c is consumption and

(3) Ri(es, eq) = pises + piqeq,

is the cost function for agents of type i, where pis and piq denote the unitary marginal

cost of es and the unitary marginal cost of eq, respectively, for an agent of type i. The

linear cost specification is used for tractability, and the qualitative features of our results

could be obtained under more general specifications. We henceforth make the following

assumptions:

(4) p1s = p2s ⌘ ps and p1q > p2q,

which together imply that type-2 agents have a (weak) absolute advantage in signaling

through each channel, and a comparative advantage in the quality signal eq.

Note that without being overly unrealistic, and in order to simplify the exposition and

make the setup more tractable, we assume that labor supply is inelastic and normalized

to a unit of time. We discuss the case of endogenous labor supply in subsection 5.4 below,

where we argue that endogenous labor supply can be viewed as a special case of adding

another signal.
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2.1 Labor market equilibrium with taxes

We analyze a two-stage signaling game involving workers and firms. In the first stage,

workers choose their e↵ort levels along two dimensions: quality and quantity, denoted as

(eis, e
i
q), for types i = 1, 2. These e↵ort levels act as signals of their productivity, which

firms then observe. In the second stage, firms make wage o↵ers based on these observed

signals. Wage o↵ers reflect firms’ beliefs about workers’ productivity, which are formed

based on the signals received.

Perfect Bayesian Equilibrium As is standard in the literature, we focus on Perfect

Bayesian Equilibria (PBE) of the signaling game, restricting our analysis to pure strate-

gies.7 Firms hold beliefs µ(es, eq) 2 [0, 1] about the probability that a worker has high

productivity (✓2), based on the observed signals (es, eq). These beliefs are updated ac-

cording to Bayes’ rule. Firms make wage o↵ers simultaneously based on their beliefs, and

these o↵ers reflect the worker’s expected productivity, similar to Bertrand competition.

We denote the wage o↵er function as ⇥(es, eq) = µ(es, eq)✓2 +(1�µ(es, eq))✓1. Along the

equilibrium path, firms maximize expected profits by setting a wage policy based on their

beliefs, while workers maximize their utility by choosing e↵ort levels (es, eq) in response to

these wage o↵ers and the relevant tax schedule. A pure strategy PBE under the general

tax function T (y, es, eq) can be represented as a set of equilibrium allocations (yi⇤, ei⇤s , e
i⇤
q )

for i = 1, 2, where:

�
y1⇤, e1⇤s , e1⇤q

�
= argmax

y1,e1s,e
1
q

n
y1 � T

�
y1, e1s, e

1
q

�
� pse

1
s � p1qe

1
q

o
subject to

y1  ⇥(e1s, e1q) · h(e1s, e1q).(5)

�
y2⇤, e2⇤s , e2⇤q

�
= argmax

y2,e2s,e
2
q

n
y2 � T

�
y2, e2s, e

2
q

�
� pse

2
s � p2qe

2
q

o
subject to

y2  ⇥(e2s, e2q) · h(e2s, e2q),(6)

7For a formal treatment of PBE, see Fudenberg and Tirole (1991).
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and the government’s revenue constraint holds:

(7)
X

i=1,2

�i · T
�
yi⇤, ei⇤s , e

i⇤
q

�
� 0.

The wage o↵er function ⇥(es, eq) is updated as firms learn from the observed signals

provided by workers. The equilibrium wage function, ⇥⇤(es, eq), represents the wage

that emerges when firms’ beliefs are consistent with the observed equilibrium behavior

of workers. An equilibrium is a stable point, in the sense that beliefs are correct given

strategies, and strategies are sequentially rational given beliefs.

In defining PBE, we assume that firms earn non-negative profits, rather than imposing

a zero-profit condition, as shown in equations (5) and (6). While the zero-profit condition

typically holds in competitive labor markets—due to competition among firms and the

properties of the human capital production function, h(es, eq)—this may not always be

the case when considering a general tax function T (y, es, eq).8 In addition, we focus on

equilibria where the government’s budget constraint (7) is satisfied. Throughout the

analysis, we assume that the government cannot run a deficit. Since our primary interest

is in taxation as a redistributive tool, we assume—without loss of generality —that the

government has no revenue needs.

As we focus on a PBE with pure strategies, the equilibrium can be either separating

or pooling. In a separating equilibrium, workers with di↵erent productivity types choose

di↵erent e↵ort levels (ei⇤s , e
i⇤
q ), allowing firms to perfectly infer each worker’s productivity:

⇥(ei⇤s , e
i⇤
q ) = ✓i for i = 1, 2. Accordingly, firms have equilibrium beliefs µ⇤(e2⇤s , e2⇤q ) = 1 for

high productivity workers and µ⇤(e1s, e
1⇤
q ) = 0 for low productivity workers. In a pooling

equilibrium, all workers choose identical e↵ort levels, so firms cannot distinguish between

high- and low-productivity types based on observed e↵ort. Instead, firms form beliefs

about productivity based on the average population distribution, i.e. µ⇤ = �2, where �2

is the proportion of high productivity workers. Consequently, the wage o↵ered is based

on average productivity: ⇥(ei⇤s , e
i⇤
q ) = ✓̄ = �2✓2 + �1✓1.

8For example, @T
�
@y could exceed 100% in certain income ranges.
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Beliefs o↵ the equilibrium path As defined earlier, firms form beliefs about a

worker’s productivity, denoted by µ(es, eq) 2 [0, 1], which represent the probability that a

worker has high productivity (✓2). Along the equilibrium path, these beliefs are updated

using Bayes’ rule to ensure that firms’ wage o↵ers reflect the expected productivity based

on the observed signals. However, situations arise when a worker chooses an unexpected

e↵ort level —one that deviates from the equilibrium path. In such cases, firms must form

o↵-equilibrium path beliefs to interpret these unexpected signals.

In our analysis, we adopt the extended intuitive criterion, an equilibrium refinement

introduced by Grossman and Perry (1986), to restrict the possible beliefs that firms can

hold in response to unexpected worker actions. This criterion allows firms to distinguish

between credible and non-credible deviations, refining the set of equilibria to those con-

sistent with plausible behavior. Unlike the standard intuitive criterion of Cho and Kreps

(1987), which considers only unilateral deviations, the extended version is more flexible,

allowing for deviations by subsets of types. Specifically, this refinement states that when a

deviation occurs, firms should update their beliefs assuming that it was made by a subset

of worker types for whom the deviation is most profitable, provided that such a deviation

is credible. This method is more restrictive than considering strictly unilateral deviations,

and thus refines the possible equilibrium outcomes.

These modeling choices are consistent with Riley (2001), who shows that under this

refinement, a pooling equilibrium cannot be maintained in a no-tax, laissez-faire regime,

and that a separating equilibrium exists only if the fraction of low-skilled workers is

su�ciently large. In our context, however, these results change depending on the design

of the tax function. As we discuss in more detail below, depending on what is observable

and thus taxable, a separating equilibrium may always exist, and pooling equilibria may

also become sustainable.

The equilibria derived from the application of the extended intuitive criterion are called

refined PBEs. Specifically, we distinguish two types of refined PBEs under di↵erent tax

regimes: the separating tax equilibrium (STE) and the pooling tax equilibrium (PTE).

Our concept of tax equilibria accommodates a wide range of potential tax systems, from
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laissez-faire with no taxation to a fully flexible tax framework that taxes both income and

the two educational signals.

We begin by characterizing the STE.

Lemma 1 (Separating Tax Equilibrium, STE). Suppose that, given the general tax func-

tion T (y, es, eq), the allocations

�
y1⇤, e1⇤s , e1⇤q

�
and

�
y2⇤, e2⇤s , e2⇤q

�
,

with (e1⇤s , e1⇤q ) 6= (e2⇤s , e2⇤q ), are the strategies played in a pure strategy PBE. Furthermore,

let µ(es, eq) : R2 ! [0, 1] be the belief function, where µ(es, eq) represents the probability

that a worker has high productivity (✓2) given the observed signals (es, eq). The belief

system is such that on the equilibrium path, beliefs are updated using Bayes’ rule such

that µ(e1⇤s , e1⇤q ) = 0 and µ(e2⇤s , e2⇤q ) = 1. O↵ the equilibrium path, beliefs are refined

using the extended intuitive criterion (Grossman and Perry, 1986).

The equilibrium allocations satisfy the following conditions:

(a) Optimality for type 1 workers

�
y1⇤, e1⇤s , e1⇤q

�
= argmax

y1,e1s,e
1
q

n
y1 � T (y1, e1s, e

1
q)� pse

1
s � p1qe

1
q

o
,

subject to:

y1⇤  ✓1h(e1s, e
1
q),(8)

y2⇤ � T (y2⇤, e2⇤s , e2⇤q )� pse
2⇤
s � p2qe

2⇤
q � y1 � T (y1, e1s, e

1
q)� pse

1
s � p2qe

1
q.(9)

(b) Optimality for type 2 workers

�
y2⇤, e2⇤s , e2⇤q

�
= argmax

y2,e2s,e
2
q

n
y2 � T (y2, e2s, e

2
q)� pse

2
s � p2qe

2
q

o
,
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subject to:

y2⇤  ✓2h(e2s, e
2
q),(10)

y1⇤ � T (y1⇤, e1⇤s , e1⇤q )� pse
1⇤
s � p1qe

1⇤
q � y2 � T (y2, e2s, e

2
q)� pse

2
s � p1qe

2
q.(11)

(c) No profitable deviations off the equilibrium path

No allocation (y, es, eq) 2 R3
+ satisfies:

y  ✓̄h(es, eq),(12)

y � T (y, es, eq)� pses � p1qeq > y1⇤ � T (y1⇤, e1⇤s , e1⇤q )� pse
1⇤
s � p1qe

1⇤
q ,(13)

y � T (y, es, eq)� pses � p2qeq > y2⇤ � T (y2⇤, e2⇤s , e2⇤q )� pse
2⇤
s � p2qe

2⇤
q .(14)

Proof. A separating tax equilibrium is a PBE that is immune to strictly profitable devia-

tions both on and o↵ the equilibrium path, the latter evaluated by the extended intuitive

criterion. On the equilibrium path, it must be the case that neither type can strictly

profit from deviating to an allocation that separates them from the other type while still

allowing the firm to make non-negative profits. Condition (a) captures that the choices

made by low-skilled workers in equilibrium maximize their utility subject to the condition

that the firm makes non-negative profits and that the incentive compatibility constraint

associated with a high-skilled worker who might mimic their behavior is satisfied. Simi-

larly, Condition (b) ensures that the equilibrium choices of high-skilled workers maximize

their utility, subject to the condition that the firm must still make non-negative profits

and the incentive compatibility constraint associated with the potential mimicking of a

low-skilled worker. Finally, Condition (c) guarantee that neither type can strictly gain by

jointly deviating to a pooling allocation o↵ the equilibrium path, while the firm remains

profitable.

Lemma 1 characterizes an STE allocation when it exists. The three conditions in

Lemma 1 ensure that workers cannot profitably deviate along the equilibrium path by

mimicking the choices of their counterparts, nor can they deviate o↵ the equilibrium path
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by choosing di↵erent levels of e↵ort, either by separating (a unilateral deviation) or by

pooling (a joint deviation).

We turn next to characterize the pooling refined PBE.

Lemma 2 (Pooling Tax Equilibrium, PTE). Suppose that, given the general tax function

T (y, es, eq), the singleton allocation

�
by⇤, be⇤s, be⇤q

�
,

forms a pure-strategy refined pooling PBE. Furthermore, let µ(es, eq) : R2 ! [0, 1] be the

belief function, where µ(es, eq) represents the probability that a worker has high productivity

(✓2) given observed signals (es, eq). The belief system is such that on the equilibrium path

µ(e⇤s, e
⇤
q) = �2

, the prior probability (share) of high-skill workers. O↵ the equilibrium path

beliefs are refined using the extended intuitive criterion (Grossman and Perry, 1986).

The equilibrium allocation satisfies the following conditions:

(a) No profitable deviations for type 1 workers

There is no (y1, e1s, e
1
q) 2 R3

+ satisfying y1  ✓1h(e1s, e
1
q) such that:

y1 � T (y1, e1s, e
1
q)� pse

1
s � p1qe

1
q > by⇤ � T (by⇤, be⇤s, be⇤q)� psbe⇤s � p1qbe⇤q,(15)

by⇤ � T (by⇤, be⇤s, be⇤q)� psbe⇤s � p2qbe⇤q � y1 � T (y1, e1s, e
1
q)� pse

1
s � p2qe

1
q.(16)

(b) No profitable deviations for type 2 workers

There is no (y2, e2s, e
2
q) 2 R3

+ satisfying y2  ✓2h(e2s, e
2
q) such that:

by⇤ � T (by⇤, be⇤s, be⇤q)� psbe⇤s � p1qbe⇤q � y2 � T (y2, e2s, e
2
q)� pse

2
s � p1qe

2
q,(17)

y2 � T (y2, e2s, e
2
q)� pse

2
s � p2qe

2
q > by⇤ � T (by⇤, be⇤s, be⇤q)� psbe⇤s � p2qbe⇤q.(18)

(c) No joint deviations to a new pooling allocation

There is no (by, bes, beq) 2 R3
+ \ {by⇤, be⇤s, be⇤q} satisfying by  ✓̄h(bes, beq) such that, for both

16



i = 1, 2,

by � T (by, bes, beq)� psbes � piqbeq > by⇤ � T (by⇤, be⇤s, be⇤q)� psbe⇤s � piqbe⇤q.(19)

Proof. A pooling tax equilibrium is a PBE that is immune to strictly profitable deviations

both on and o↵ the equilibrium path, the latter evaluated by the extended intuitive crite-

rion. Since there are no possible deviations along the equilibrium path, the only possible

deviation is a deviation to a separating allocation o↵ the equilibrium path. Condition (a)

prevents low-skilled workers from benefiting by deviating from an allocation that separates

them from high-skilled workers, while ensuring that firms continue to earn non-negative

profits. Similarly, Condition (b) prevents high-skilled workers from benefiting by deviat-

ing from a separating allocation, with the same requirement on firm profitability. Finally,

Condition (c) prevents both types of workers from jointly benefiting from deviating to an

alternative pooling allocation, again while ensuring that firms remain profitable.

Lemma 2 characterizes a PTE allocation, if it exists. By conditions (a)–(c), Lemma 2

ensures that the PTE is immune to strictly profitable deviations o↵ the equilibrium path.

Before turning to the government problem, it is important to note that the tax func-

tion plays a crucial role in supporting the existence of an equilibrium, regardless of the

relative size of the two groups of agents or the magnitude of the di↵erence p1q � p2q—a no-

table contrast to the typical results when the refinements of Grossman and Perry (1986)

are applied. However, an equilibrium does not exist for every possible tax configura-

tion. For example, a pooling equilibrium does not exist under a laissez-faire regime (a

result well established in the literature) or under an income-only tax regime (as formally

demonstrated in Online Appendix H). Intuitively, to maintain a pooling equilibrium, pol-

icy instruments must be su�ciently comprehensive to prevent type 2 workers from using

their comparative advantage in an e↵ort dimension to separate themselves from less skilled

counterparts. In terms of the conditions in Lemma 2, a pooling equilibrium does not exist

under laissez-faire or with only an income tax in place because condition b) is necessarily

violated. Moreover, according to Lemma 1, a separating equilibrium may also not exist
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under laissez-faire, since it is possible to satisfy conditions (12)–(14) if the proportion of

low-skilled workers in the population is small enough.

2.2 The government problem

We now turn to describe the optimal tax problem solved by the government. In line with

the informational assumptions described at the beginning of Section 2, we focus on a

setting where the (quality) signal eq is observed only by firms, and thus an individual’s

tax liability can be conditioned only on labor income y and the (quantity) signal es.9 In

accordance with most of the literature on optimal taxation, instead of directly optimizing

the tax function T (y, es), we will follow a mechanism design (self-selection) approach, first

characterizing a constrained e�cient allocation and then, in a separate section, considering

the properties of the implementing tax function.

Definition 1 (Max-Min Optimum, MMO). A Max-Min Optimum (MMO) is given by a

solution to:

(20)
��

c1, e1s, e
1
q

�
,
�
c2, e2s, e

2
q

� 
2 argmax

c1,e1s,e
1
q ,c

2,e2s,e
2
q

c1 �R1
�
e1s, e

1
q

�
,

subject to the government revenue constraint

(21)
X

i=1,2

�i[yi � ci] =
X

i=1,2

�i
⇥
h(eis, e

i
q)⇥

i � ci
⇤
= 0,

where the wage rate is given by

⇥i =

8
>><

>>:

✓i, for all
�
e1s, e

1
q

�
6=
�
e2s, e

2
q

�

✓, for all
�
e1s, e

1
q

�
=
�
e2s, e

2
q

�
,

(22)

9In Section 5 we discuss how our results would change under alternative observational assumptions.
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and the incentive-compatibility (IC) constraints are

c2 �R2
�
e2s, e

2
q

�
� c1 �R2

�
e1s, be2q

�
,(23)

c1 �R1
�
e1s, e

1
q

�
� c2 �R1

�
e2s, e

2
q

�
,(24)

where

be2q =

8
>><

>>:

eq which solves y1 = h (e1s, eq) ✓, for all
�
e1s, e

1
q

�
6=
�
e2s, e

2
q

�

e1q, for all
�
e1s, e

1
q

�
=
�
e2s, e

2
q

�
.

(25)

The MMO in Definition 1 implicitly defines the tax code that induces the best pure

strategy PBE and it can correspond to either an STE or a PTE. In Online Appendix

A, we show that the feasible set includes both equilibrium configurations and that the

maximum is well defined. We postpone the welfare comparison of the two configurations

to section 2.3.10

In the case of an STE, each of the two groups of agents is induced to choose a type-

specific pair (es, eq), and workers are compensated by firms based on their true productiv-

ity. Redistribution to type-1 agents occurs through the traditional ex-post tax/transfer

channel, with type-2 agents paying a tax that finances a transfer to type-1 agents. In

contrast, in the case of a PTE, all agents are induced to choose the same pair (es, eq), and

are compensated by firms according to their average productivity ✓̄, thereby earning the

common income level ✓̄h (es, eq). In this scenario, since we assume no exogenous revenue

requirement for the government, everyone pays the same tax, which is zero. Redistribution

in this case occurs not through the traditional income channel—where high-income earn-

ers pay taxes to finance transfers to low-income earners—but through the wage channel,

by suppressing wage inequality.

To distinguish between these two channels of redistribution, we use the term predis-

10Note that by defining the MMO as the best equilibrium from the class of pure strategy equilibria,

we implicitly punt on the question of whether there are tax codes that induce mixed strategy equilibria

that are even better.
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tribution to refer specifically to redistribution that operates through the wage channel.

According to the definition of the wage rate ⇥i, i = 1, 2, predistribution occurs when

the MMO leads to a PTE, but not when it leads to an STE. In our framework, pre-

distribution manifests itself as wage pooling, where workers are paid according to the

average productivity rather than according to their marginal productivity.11 Moreover,

in our setup, wage pooling is synonymous with income pooling. This contrasts with the

standard Mirrlees framework, where income pooling does not imply wage pooling. This

distinction underscores that predistribution in our model operates through wage com-

pression conditional on income, a mechanism that is not possible in the standard Mirrlees

model.

The objective (20) reflects that the social welfare function is of the max-min type,

focusing on a specific point on the second-best Pareto frontier. To relax the assumption

of a max-min social objective, an additional constraint could be added to the maximiza-

tion problem, requiring that the utility achieved by type-2 agents is weakly greater than

a pre-specified target level V . By varying V and repeatedly solving the government’s

optimization problem, all points on the second-best Pareto frontier could be obtained.

Equation (21) represents the government’s budget constraint. We assume that the

zero-profit condition holds for both workers and that the government’s revenue constraint

is binding. Relaxing either condition would allow the government to modify the tax

function and increase redistribution.12

Equations (23)–(24) are the two incentive compatibility (IC) constraints. Equation

11We recognize that there may be other, broader definitions of predistribution that involve wage com-

pression that does not manifest itself as wage pooling. For example, a government-mandated minimum

wage could reduce wage inequality by raising the wages of the lowest-paid workers, thereby compressing

the wage distribution without directly pooling wages across the workforce.

12For example, if the revenue constraint is slack (a budget surplus), the government could o↵er a small

lump sum transfer to both types. Continuity would ensure that the revenue constraint is not violated.

Incentive compatibility would be maintained by the linearity of utility in consumption. If the firm makes

positive profits, the government could slightly increase the compensation level, y, which would maintain

non-negative profits due to continuity. This would create a fiscal surplus that could be refunded as a

lump sum transfer.
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(23) is relevant because the government seeks to redistribute from type-2 agents to their

type-1 counterparts, which implies that type-2 agents may have an incentive to mimic

type-1 agents in order to qualify for more favorable tax treatment (i.e., to receive a fiscal

transfer instead of paying a tax). Equation (24) is relevant because, due to asymmetric

information in the labor market, type-1 agents may have an incentive to mimic type-2

agents in order to receive compensation based on a productivity higher than their real

one.13 Note that under a PTE, the equations (23)–(24) are trivially satisfied.

Let us now describe the incentive constraints in more detail. Equation (24) indicates

that for a type-1 agent to qualify for a higher wage, he/she must replicate both e↵ort

dimensions of type-2 agents, since the firm observes both education dimensions. For type-

2 agents, the situation is more complex because of possible o↵-equilibrium deviations. In

order to qualify for the low-skilled tax treatment, they must replicate the pre-tax income

level and e↵ort es of type-1 agents. Type-2 agents might also replicate the quality of

e↵ort eq of type-1 agents, which would make the two types indistinguishable to the firm,

leading the firm to treat both as low-skilled types. To prevent such a deviation, the social

planner must pay type-2 agents an information rent, since type-2 agents can earn the

same income (y1) as the low-skilled type while incurring lower costs due to p2q < p1q.

Although firms do not directly observe worker productivity, and type-2 agents cannot

identify themselves as high-productivity types while mimicking type-1 agents, there is a

potential o↵-equilibrium deviation that is even more profitable for type-2 workers than

simply replicating type-1 choices. Specifically, if type-2 agents choose lower quality e↵ort

while type-1 agents do the same, the firm will be unable to distinguish between them

and will pay both the average wage, rationally expecting to hire both types. For type-2

agents, this o↵-equilibrium deviation is particularly attractive because the level of e↵ort

required to earn y1 when paid the average wage is lower than that required to earn y1

when paid ✓1.

13In our setting, the presence of two IC constraints, often both binding, is a key feature. In the standard

setting, without the second layer of asymmetric information between firms and workers, typically only the

downward IC constraint (associated with a mimicking high-skill type) is binding in the optimal solution.
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Two important observations about the incentive constraint (23) are worth noting.

First, violating this constraint would violate the extended intuitive criterion (discussed in

section 2.1) —since both types would find it strictly profitable to deviate to the pooling

allocation associated with y1. Second, the constraint (23) reflects the information rent

that accrues to high ability workers due to the productivity di↵erence between types (a

type-2 agent mimicking type-1 behavior is rewarded based on average productivity, not

low productivity as would be the case if both low type signals were replicated). However,

this information rent is smaller than in the standard Mirrleesian framework, where a

type-2 mimicker would be rewarded according to true productivity. Thus, asymmetric

information between firms and workers may make it less attractive for high-skill types to

mimic low-skill types, potentially increasing redistribution relative to the standard setup

(see also Stantcheva 2014). However, this is not a general result because, as our analysis

shows, the potentially binding upward IC constraint must also be considered relative to

the standard Mirrlees model. We return to this issue in section 2.4.

2.3 When is predistribution optimal?

Let us now analyze the social optimality of both STE and PTE configurations. In an

STE, the government typically cannot fully eliminate the information rents that arise

from productivity di↵erences between workers. In contrast, in a PTE, the government

fully eliminates these information rents by enforcing full wage compression, although

the PTE generally has less desirable e�ciency properties. The equity-e�ciency tradeo↵

between pooling and separation depends critically on the magnitude of the productivity

di↵erences, and of the heterogeneity in the costs associated with acquiring the quality

signal eq, between the two types of workers.14 Proposition 1 below summarizes the main

results.

Proposition 1 (Optimality of Predistribution). Let the ability advantage of type-2 agents

be denoted by ✏ = ✓2�✓1 � 0, and the cost disadvantage of type-1 agents by � = p1q�p2q � 0.

14In a standard Mirrleesian framework with two types of agents, pooling is never optimal and is in

fact Pareto-dominated by the laissez-faire allocation.
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The MMO can be characterized as follows:

(a) There is a non-empty set of parameters in the (✏, �)-space for which the MMO is

given by a PTE (and thus features predistribution).

(b) For any ✏ > 0, there exists a threshold �⇤(✏) � 0 such that the MMO is given by an

STE for � > �⇤ and a PTE for � < �⇤.

(c) There exists some cuto↵ "⇤ > 0 such that �⇤(") = 0 for any " > "⇤ (and thus the

MMO is an STE for all �), while �⇤(") > 0 for all " < "⇤ (so the MMO is either an

STE or a PTE, depending on the value of �).

Proof. See Online Appendix B.

While augmenting the income tax system with taxes or subsidies on education may im-

prove redistribution under separation —by alleviating the binding IC constraints faced by

the government —Proposition 1 outlines cases where taxing or subsidizing education, by

enabling the implementation of a PTE, increases social welfare beyond what is achievable

under an STE.

Part (a) of Proposition 1 establishes the case for predistribution by identifying a non-

empty set of parameters where pooling increases welfare relative to separation. Part (b)

shows that pooling is socially desirable when the cost di↵erence of obtaining the quality

signal between the two types is moderate. In this scenario, type-1 workers —who typically

invest more e↵ort in the quality dimension to qualify for higher wages —are more inclined

to engage in mimicking. In contrast to the standard Mirrlees model, in this case, both

IC constraints are binding, and the e�ciency gains from separation are limited. Part

(c) shows that pooling is preferred when the productivity gap between the two types is

moderate, meaning that the e�ciency loss from wage compression is relatively small.

2.4 The ambiguous welfare e↵ects of asymmetric information

A key result in Stantcheva (2014) is that adverse selection in the labor market can increase

welfare by reducing the information rent that high-skilled workers can earn by mimicking
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low-skilled workers. In other words, adverse selection makes it more costly for high-

skilled workers to underinvest in human capital and pretend to be low-skilled. This result

is somewhat surprising, as it suggests that the presence of asymmetric information, which

is typically viewed as a market friction that reduces welfare, can have a positive welfare

e↵ect. However, we show that this result does not necessarily hold in our setting if

both types of workers have an incentive to mimic each other, depending on the relative

productivity and cost of acquiring human capital.

Our analysis suggests (see the proof of Proposition 1 in Online Appendix B) that when

the MMO is given by an STE, it may well be the case that both IC constraints bind in the

optimal solution for the government’s optimization program. This will happen when the

comparative advantage of type 2 workers in the quality dimension of education is modest

(� is small) and the di↵erence in productivity between types is significant (" is large).

The former makes mimicking by type-1 workers (who want to be paid as if they had high

productivity) more attractive. The latter makes the STE superior to a PTE because

of the disincentives to human capital acquisition associated with a pooling equilibrium.

That welfare may be lower in such a setting than in a “Mirrleesian” setting where firms

observe workers’ productivity is shown formally in Proposition 2.

Proposition 2. If � is su�ciently small and " > 0 is su�ciently large, the MMO is

given by an STE and the welfare level is lower than in a scenario where firms observe the

productivity of workers.

Proof. See Online Appendix C.

Thus, our findings highlight that the impact of asymmetric information on welfare is

context-dependent and generally ambiguous: while it can improve welfare under certain

conditions (as in Stantcheva 2014), it can also reduce welfare when the conditions favor

both types of workers having incentives to mimic each other.
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2.5 A parametric example

Given a specific functional form of the human capital production function, we can an-

alytically identify the combinations of ✏ and � for which predistribution is favorable.

Specifically, we assume the following production function:

(26) h(es, eq) = (eseq)
� ,

where 0 < � < 1/2, implying strict concavity. To evaluate the results, we take the

following approach: for each (✏, �) combination, based on Definition 1, we compute both

the optimal STE, which maximizes welfare for type-1 agents, and the optimal PTE, which

does the same. We then compare these results to determine which one yields higher

welfare. A graphical illustration is provided to show the parameter regions in which

predistribution (PTE) constitutes the social optimum, and how these regions depend on

the set of binding incentive constraints in the optimal PTE. The analytical inequalities

defining these regions are derived in Online Appendix D.2 and summarized in Online

Appendix D.3. Figure 1 evaluates these regions using the parameters � = 0.10, �1 =

�2 = 0.5, p1q = 10, and ✓2 = 10, where � ranges from 0 to p1q and ✏ ranges from 0 to ✓2.
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Figure 1: Illustration of the case for predistribution and the pattern of binding IC con-
straints.
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Left panel: Dark purple region is where both IC constraints are binding under the
optimal STE. Light purple region is where only the downward constraint is binding under
such an equilibrium. Right panel: Dark green region is the subregion of dark purple
where the optimal PTE welfare dominates the optimal STE. Light green region is the
subregion of the light purple region where the optimal PTE welfare-dominates the optimal
STE.

Figure 1 shows that the region where PTE dominates STE (the dark green area in

the right panel) largely overlaps with the region where both IC constraints are binding

in STE (the dark purple area in the left panel). However, for moderate values of ✏, there

are also cases (indicated by the light green area in the right panel) where the PTE is

welfare superior to the STE, even though only the downward IC constraint is binding in

the latter. Online Appendix D.1 explores the reasoning behind the shape of these regions,

distinguishing between cases where � = 0, � > 0 but small, and � > 0 and large, while also

explaining the role of �1 and �. In addition, Online Appendix K provides further analysis

based on the same functional form, quantifying the welfare gains from predistribution.
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3 Wedges in the constrained e�cient allocation

We turn next to the characterization of the optimal wedges, denoted by ⌦ and defined

as the di↵erences, at the MMO, between the marginal rates of transformation and the

marginal rates of substitution among the variables entering individuals’ utility functions.

Proposition 3 summarizes the main results.

Proposition 3. (a) If the MMO is a PTE (ĉ, ŷ, ês, êq), then it satisfies:

b⌦1
es,eq ⌘ \MRTS

1
� ps

p1q
= 0 and b⌦2

es,eq ⌘ \MRTS
2
� ps

p2q
< 0,(27)

b⌦1
es,c ⌘ 1� ps

✓1h1 (bes, beq)
= b⌦1

eq ,c = 1�
p1q

✓1h2 (bes, beq)
< 0,(28)

b⌦2
eq ,c ⌘ 1�

p2q
✓2h2 (bes, beq)

> b⌦2
es,c = 1� ps

✓2h1 (bes, beq)
> 0,(29)

where \MRTS
1
= \MRTS

2
⌘ h1(bes,beq)

h2(bes,beq) .

(b) If the MMO is an STE {(c1, y1, e1s, e1q), (c2, y2, e2s, e2q)}, then it satisfies:

⌦1
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�1

✓
MRTS21p

2
q
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⌦2
es,eq ⌘ MRTS2 � ps

p2q
=

�1

�2

✓
p1q
p2q

� 1

◆
·MRTS2 � 0,(33)
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p2q
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�
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q
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✓2h1

�
e2s, e

2
q

� = 0,(35)

where �2
and �1

denote the Lagrange multipliers associated with constraint (23) and

constraint (24), respectively, MRTSi ⌘ h1(eis,eiq)
h2(eis,eiq)

and MRTS21 ⌘ h1(e1s,be2q)
h2(e1s,be2q)

, and ê2q

is the quality e↵ort chosen by a type 2 mimicker when pooling with type 1 agents at

income level y1, as defined by (25).
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Proof. See Online Appendix E.

Starting with part (a), condition (27) implies that in a PTE, the e↵ort mix of type-1

agents is undistorted, while the e↵ort mix of type-2 agents is distorted in the direction

of es. Both results are driven by our assumption that the social objective is to maximize

the welfare of type-1 agents, together with the fact that in a PTE all agents choose a

common e↵ort mix (ês, êq). This is thus chosen to minimize the cost incurred by type-1

agents to earn ŷ. However, since type-2 individuals have a comparative advantage in the

eq dimension, they would be better o↵ with a higher eq and a lower es, implying that

(ês, êq) entails a distortion towards es for them. Since h represents the acquired human

capital, condition (27) also implies that in a PTE the acquired human capital of type-1

agents is distorted upward (as stated in eq. (28)), while the acquired human capital of

type-2 agents is distorted downward (as stated in eq. (29)).

Now consider part (b) of Proposition 3, which refers to the case of a separating tax

equilibrium. Condition (30) implies that the e↵ort-mix of type-1 agents is distorted in the

direction of es.15 An intuition for this result comes from the observation that, starting

from an initial situation where type-1 agents are induced to choose an undistorted e↵ort

mix, the introduction of a small distortion in the direction of es has only a second-order

welfare e↵ect on type-1 agents, while it has a first-order detrimental e↵ect on the welfare

of type-2 mimickers. This in turn allows relaxing the binding incentive compatibility

constraint (23).16

15Recall that our focus on a max-min social objective implies that the downward IC constraint (23)

is necessarily binding, i.e. �2 > 0.

16Suppose that, on the isoquant ✓1h(es, eq) = y1, type-1 agents were initially induced to choose the

e↵ort mix (e1s, e
1
q) that satisfies the no-distortion condition

h1(e
1
s,e

1
q)

h2(e1s,e
1
q)

= ps

p1
q
. Since the government can

observe es, the type-2 mimickers must also choose e1s, and so their e↵ort choice is given by (es, eq) =

(e1s, be2q), where be2q satisfies the equation ✓h(e1s, be2q) = y1, so be2q < e1q. Since p
2
q < p1q and

h1(e
1
s,be

2
q)

h2(e1s,be2q)
<

h1(e
1
s,e

1
q)

h2(e1s,e
1
q)
,

it follows that MRTS21 =
h1(e

1
s,be

2
q)

h2(e1s,be2q)
< ps

p2
q
, meaning that type-2 mimickers would be forced to choose an

e↵ort mix biased toward es. Now consider the e↵ect of a perturbation that induces type-1 agents to

choose the e↵ort mix (e1s + des, e1q �
h1(e

1
s,e

1
q)

h2(e1s,e
1
q)
des), where des is positive and small. By construction, the

new e↵ort mix still belongs to the isoquant ✓1h(es, eq) = y1. Moreover, it entails only a second-order
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Eqs. (31)–(32) shed light on the distortion of each given dimension of e↵ort relative

to consumption. According to (31), e1q is distorted downward relative to consumption.

This happens for two reasons. On the one hand, type-1 agents incur higher costs to

acquire eq compared to type-2 agents (since p1q > p2q), and thus also compared to type-2

as mimickers. On the other hand, the marginal productivity of eq is lower for type-1

agents compared to type-2 mimickers (due to the fact that ✓ > ✓1 implies be2q < e1q and

thus h2

�
e1s, e

1
q

�
< h2

�
e1s, be2q

�
). Taken together, these two circumstances imply that the

additional cost that type-1 agents would incur in raising e1q to the extent necessary to earn

an additional dollar exceeds the corresponding cost for type-2 agents acting as imitators.

Eq. (32) tells us that in general one cannot determine the direction of the optimal

distortion of e1s (relative to consumption). This is due to the fact that one cannot unam-

biguously assess whether the marginal productivity of es is higher or lower for a type-1

agent compared to a type-2 mimicker. On the one hand, the fact that type-2 agents are

more productive suggests that the marginal productivity of es should be lower for type-1

agents than for type-2 mimickers; this provides a motive to bias e1s downward. On the

other hand, the higher productivity of type-2 agents also implies that be2q < e1q, which in

turn implies (assuming a positive cross derivative h12) that h1

�
e1s, e

1
q

�
> h1

�
e1s, be2q

�
; this

represents a motive to distort e1s upwards. Note that since p1s = p2s = ps, price consid-

erations play no role in determining the direction of the distortion. Note also that, at

least for the case where the h function is additively separable in es and eq, one can clearly

conclude that e1s is distorted downward relative to consumption.

Now consider the equations (33)–(35), which provide expressions for the wedges char-

acterizing the allocation obtained by type-2 agents, and notice that �1 can be either

positive (the upward IC constraint (24) is binding) or zero (the upward IC constraint (24)

is slack).17

increase in the total costs borne by type-1 agents (assuming that the pre-reform e↵ort mix satisfied the

condition
h1(e

1
s,e

1
q)

h2(e1s,e
1
q)

= ps

p1
q
). However, by exacerbating the initial distortion that characterizes the e↵ort

mix of type-2 imitators, the proposed reform would have a negative first-order e↵ect on them.

17A necessary but not su�cient condition for �1 > 0 is that the upward IC constraint associated with

the low-skilled workers is binding under laissez-faire. This is because the redistribution in favor of type-1
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When �1 = 0, all wedges are zero in the allocation received by type-2 agents. When

�1 > 0, eq. (33) tells us that the e↵ort mix of type-2 agents is distorted in the direction of

eq (i.e., e2q is distorted upward relative to e2s). The reason is that this is the dimension of

e↵ort in which type-2 agents have a comparative advantage over their type-1 counterparts.

Thus, by distorting the e↵ort mix of type-2 agents in the direction of eq, one can make

imitation by type-1 agents less attractive. The intuition behind this result can again be

captured by a perturbation argument. For a given isoquant ✓2h (es, eq) = y2, suppose that

type-2 agents are induced to choose the e↵ort mix (e2s, e
2
q) that satisfies the no-distortion

condition MRTS2 = ps
p2q
. From constraint (24) we know that type-1 agents, when acting

as mimickers, replicate the e↵ort choices of type-2 agents. Given that p2q < p1q, it follows

that type-1 agents, when acting as mimickers, are forced to choose an e↵ort mix that

is distorted toward eq. Now suppose that instead of letting type-2 agents satisfy the

condition MRTS2 = ps
p2q
, they are induced to choose an e↵ort mix that is slightly distorted

toward eq. If the distortion is small, it will only have a second order e↵ect on their total

cost pse2s+p2qe
2
q; however, by increasing pse2s+p1qe

2
q, it will have a first order negative e↵ect

on type 1 mimickers.

According to (34), when �1 > 0, e2q is unambiguously distorted upward relative to

consumption. This happens because, compared to type-1 agents, type-2 agents incur a

lower cost to acquire eq (p2q < p1q). Thus, the additional cost that type-2 agents would

incur to raise e2q to the extent necessary to earn an additional dollar is less than the

corresponding cost for type-1 agents acting as mimickers.

Finally, looking at (35), we can see that e2s is always undistorted relative to consump-

tion. The reason for this is a combination of two circumstances. First, the marginal cost

of acquiring es is the same for all agents. Second, when acting as mimickers, type-1 agents

replicate the e↵ort choices of type-2 agents. Taken together, these two circumstances im-

ply that the additional cost that type-2 agents would incur if they were to raise e2s to the

extent necessary to earn an additional dollar is the same as for type-1 agents acting as

agents that occurs through the tax system necessarily reduces the incentive for type-1 agents to mimic

type-2 agents.
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mimickers.

4 Implementation through means-tested education

subsidies or mandates

We now turn to discuss how the wedges given in Proposition 3 translate into properties

of the implementing tax structure. We start with the case where the MMO is given by

an STE.

4.1 Implementation of the STE

If the MMO is given by an STE, the implementation can be achieved by combining

a nonlinear income tax with an income-contingent subsidy scheme for education. In

particular, one can obtain the following result.

Proposition 4. Let �⇤
and b� be defined as

�⇤ ⌘ �2

�1

✓
MRTS

1 �MRTS
21p

2
q

p1q

◆
p1q
ps

> 0,(36)

b� ⌘
✓
1 +

�2

�1

◆✓
MRTS

1 �MRTS
21p

2
q

p1q

◆
p1q
ps

> �⇤.(37)

Moreover, denote by (eints , eintq ) the intersection point between the two isocost lines:

(1� b�)pses + p1qeq = (1� b�)pse1s + p1qe
1
q(38)

(1� b�)pses + p2qeq = (1� b�)pse1s + p2qbe2q.(39)

Suppose ✓2h(eints , eintq )  y1. Implementation can then be achieved by an income-dependent

subsidy scheme for es, denoted by S(es, y), and a nonlinear income tax function T (y),
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satisfying:

S(es, y) =

8
>>>>>><

>>>>>>:

b�pses, if 0  es  e1s and y = y1,

[e1sb� + (es � e1s)�
⇤] ps, if es > e1s and y = y1,

0, otherwise,

(40)

T (y) =

8
>><

>>:

y1 � c1 + b�pse1s, if y = y1,

y2 � c2, if y 6= y1.

(41)

Suppose instead that ✓2h(eints , eintq ) > y1. Implementation can then be achieved by:

S(es, y) =

8
>>>>>>>>>><

>>>>>>>>>>:

pses, if 0  es  eints and y = y1,

[eints + (es � eints )b�] ps, if eints < es  e1s and y = y1,

[eints + (e1s � eints )b� + (es � e1s)�
⇤] ps, if es > e1s and y = y1,

0, otherwise,

(42)

T (y) =

8
>><

>>:

y1 � c1 + [eints + (e1s � eints )b�] ps, if y = y1,

y2 � c2, if y 6= y1.

(43)

Proof. See Online Appendix F.

The implementation scheme described in Proposition 4, which may look a bit over-

whelming, is actually quite simple. It is based on a nonlinear income tax supplemented

by an income-dependent subsidy schedule for es that is piecewise linear and follows a de-

clining scale. In equilibrium, the education subsidy is provided exclusively to low-skilled

workers (who produce a low level of income), which serves to distort their e↵ort mix

(toward the quantity dimension) in order to make mimicking more costly for high-skilled

workers (whose e↵ort mix remains undistorted).

The kinks characterizing the schedule S (es, y) are required to ensure that any agent

earning y1 has the incentive to choose e1s, i.e., the constrained e�cient level of es associated

with type-1 agents. Note that a proportional subsidy set at the rate �⇤, as defined by (36),
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would be su�cient to guarantee that type-1 agents are incentivized to choose e1s on the

isoquant ✓1h (es, eq) = y1; this is because type-1 agents satisfy their first-order condition:

h1 (es, eq)

h2 (es, eq)
=

(1� �⇤) ps
p1q

=
ps
p1q

� �⇤ps
p1q

.

The subsidy rate �⇤ produces the wedge provided by (30). However, such a proportional

subsidy would not be su�cient for implementation purposes. The reason is that type-

2 agents, when acting as mimickers and earning y1, might find it optimal to choose a

di↵erent value for es; in particular, given that ps
p2q

> ps
p1q
, they may have an incentive to

choose es < e1s.
18 To avoid this possibility, a kinked schedule is needed: for es  e1s,

the subsidy rate should be large enough to ensure that type-2 agents, if they behave as

mimickers and earn y1, have no incentive to choose a value for es that is less than e1s; for

es > e1s, the subsidy rate should be small enough to ensure that type-1 agents have no

incentive to choose a value for es that is greater than e1s. Thus, one should set � > �⇤ for

es  e1s and � = �⇤ for es > e1s.

Regarding how much larger than �⇤ the subsidy rate for es  e1s should be, one should

consider the various o↵-equilibrium strategies available to type-2 agents if they decide to

behave as mimickers. One possibility is for them to earn y1 by pooling with their type-1

counterpart on a common e↵ort vector. In this case, type-2 agents would be rewarded

according to the average productivity ✓, and (37) defines the subsidy rate needed to induce

them to choose es = e1s. In fact, b� is defined to reflect the wedge faced by type-2 agents

at the o↵-equilibrium e↵ort mix
�
e1s, be2q

�
, where be2q is implicitly defined as the solution to

18The reason this poses an implementability problem is that the incentive compatibility constraint

(23) is binding in the MMO. The right-hand side of this constraint provides the utility of type-2 agents

as mimickers when earning y1 and pooling with type-1 agents at the e↵ort mix
�
e1s, be2q

�
. Thus, if type-2

mimickers have a better deviation strategy available, implementability breaks down.
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the equation:19

✓h
�
e1s, be2q

�
= y1.

In other words, the subsidy rate b� satisfies the first-order condition:

h1

�
e1s, be2q

�

h2

�
e1s, be2q

� =
(1� b�) ps

p2q
=

ps
p2q

� b�ps
p2q

.

The other available o↵-equilibrium strategy is for type-2 agents to earn y1 by choosing

an e↵ort mix that allows them to achieve separation from their type-1 counterpart. Since

type-2 agents have a comparative advantage in the eq dimension, separation would nec-

essarily require them to choose, on the isoquant ✓2h (es, eq) = y1, an e↵ort mix such that

es < e1s and eq > e1q.

The problem with letting � = b� for all values of es  e1s is that, in general, it does

not exclude the possibility that, as mimickers, type-2 agents may be better o↵ earning y1

and achieving separation than earning y1 and pooling with type-1 agents at the e↵ort mix
�
e1s, be2q

�
. For this reason, implementation may require the introduction of a third segment

on the subsidy schedule S (es, y1).

Whether or not an additional third segment is needed depends on the location of the

point defined as
�
eints , eintq

�
in Proposition 4, where the two isocost lines (38) and (39)

intersect. The first isocost line is for type-1 agents and passes through the point
�
e1s, e

1
q

�
;

the second (flatter than the first because p1q > p2q) belongs to type-2 agents and passes

through the point
�
e1s, be2q

�
. If ✓2h

�
eints , eintq

�
 y1, there is no need for an additional

segment on the subsidy schedule. The reason is that on the isoquant y1 = ✓2h (es, eq)

there is no pair (es, eq) that is also below the isocost line (39) (i.e., for type-2 agents, it

entails an e↵ort cost lower than the one they would incur if they mimicked by pooling,

19Notice that, exploiting the fact that �2

�1

⇣
MRTS1 �MRTS21 p2

q

p1
q

⌘
p1
q

ps
= 1�MRTS1 p1

q

ps
, we have that

b� =

✓
1 +

�2

�1

◆ 
MRTS1 �MRTS21 p

2
q

p1q

!
p1q
ps

= 1�MRTS21 p
2
q

ps
,

where MRTS1 =
h1(e1s,e1q)
h2(e1s,e1q)

and MRTS21 =
h1(e1s,be2q)
h2(e1s,be2q)

.
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i.e., earning y1 while being paid according to the average productivity ✓) and above the

isocost line (38) (meaning that type-1 agents would be discouraged from replicating the

e↵ort choices of type-2 agents). Instead, if ✓2h
�
eints , eintq

�
> y1, type-2 mimickers are

better o↵ earning y1 and achieving segregation than pooling with type-1 agents at the

e↵ort mix
�
e1s, be2q

�
. But since the incentive compatibility constraint (23) is binding in the

MMO, it follows that a two-bracket subsidy schedule with � = b� for es  e1s and � = �⇤

for es > e1s does not ensure implementation. In this case, the schedule S (es; y1) must be

adjusted by introducing an additional segment, for es  eints , with an associated subsidy

rate of 100%.20 This full subsidy implies that, on the isoquant ✓2h (es, eq) = y1, any point

that allows type-2 agents to achieve separation entails for them a higher cost than the

one they would incur by pooling with type-1 agents at the e↵ort mix
�
e1s, be2q

�
.

Overall, the subsidy schedule incentivizes the choice es = e1s by all agents earning y1,

regardless of their type.

The income tax levied, provided by (41) and (43), is designed to balance the pub-

lic budget, with the revenue raised by taxing the income earned by type-2 agents (i.e.,

T (y2) = y2�c2) is used to finance the transfer received by type-1 agents. Moreover, since

this transfer is at least partly provided by education subsidies, T (y1) must be di↵erent

depending on whether the subsidy schedule S (es; y1) has two or three segments.21

Finally, note that, somewhat surprisingly, we obtain the canonical e�ciency-at-the-

top result for high-ability agents (Sadka 1976).22 One might have expected, for example,

that the tax function should have been used to distort the e↵ort allocation of type-2

20In order to maintain a balanced public budget, the introduction of an additional segment requires a

corresponding adjustment of the income tax levied at y = y1.

21As we discuss in the Online Appendix, another implementing scheme could be obtained by assuming

that, for y = y1, � (es) = 100% for es  e1s and � (es) = 0 for es > e1s, which would be equivalent to

adopting a system with an income-based education mandate. In this case, in order to maintain a balanced

public budget, one should properly adjust the income tax function by increasing T
�
y1
�
; in particular,

one should set T
�
y1
�
= y1 � c1 + pse1s. For the case where e1s  e2s, an income-independent education

mandate requiring that es � e1s would su�ce.

22To see this, note that for any y other than y1 there is only an income tax and no education subsidy.

Moreover, for all y other than y1, the income tax is constant, implying a zero marginal tax rate.
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agents toward eq—the dimension in which they have a comparative advantage—in order

to discourage type-1 agents from mimicking them. However, a key insight is that the

IC constraint for type-1 agents is already embedded in the laissez-faire equilibrium. As a

result, type-2 agents have already internalized this constraint when making their decisions.

The labor contract o↵ered to type-2 agents is designed to maximize their utility, subject

to the IC constraint of type-1 agents. This is consistent with the government’s goal of

extracting as much revenue as possible from type-2 agents to facilitate redistribution. It

is also worth noting that although the marginal tax rates for high-skilled agents are zero

under the implementing tax function, the income level y2 in the STE is lower than under

laissez-faire when the upward IC constraint for low-skilled workers binds in the laissez-

faire scenario. This result arises because redistribution through the tax system increases

the utility of type-1 agents relative to their utility under laissez-faire, thereby reducing

their incentive to imitate type-2 agents.

4.2 Implementation of the PTE

If the MMO is given by a PTE, the implementation can be achieved by the combined use

of a tax that depends only on income and a mandate that enforces a lower bound on es.

In particular, one can obtain the following result.

Proposition 5. Let emin
q be the value of eq that solves the following problem:

min
eq

✓2h (bes, eq) subject to ✓1h (bes, beq)� T
�
✓1h (bes, beq)

�
� p1qbeq � ✓2h (bes, eq)� p1qeq,

and define ysep as ysep ⌘ ✓2h
�
bes, emin

q

�
. Furthermore, denote by

�
e2⇤s , e2⇤q

�
the e↵ort mix

that solves the following unconstrained maximization problem:

(44) max
es,eq

✓2h (es, eq)� pses � p2qeq.

Implementation can be achieved by combining a binding mandate on es, set to es = bes,
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with an income tax T (y) such that

T (y) =

8
>><

>>:

⇣
1
✓1 �

1
✓

⌘
p1q

h2(bes,beq)by +
⇣

1
✓
� 1

✓1

⌘
p1q

h2(bes,beq)y, for all y 2 [0, by]

(y � by)max

⇢
1� p2q

✓h2(bes,beq)
,
[✓2(e2⇤s ,e2⇤q )�pse2⇤s �p2qe

2⇤
q ]�[by�psbes�p2qbeq]

ysep�by

�
, for all y > by.

(45)

Proof. See Online Appendix G.

Formula (45) defines a two-bracket piecewise linear income tax with a kink at y = by, a

negative marginal tax rate on the first bracket, a positive marginal tax rate on the second

bracket, and a U-shaped profile of average tax rates (always positive except at y = by,

where the average tax rate is zero). The negative marginal tax rate on the first bracket

serves to distort the acquired human capital of type-1 agents upward and to incentivize

them to choose the e↵ort mix (bes, beq).23

The (positive) marginal tax rate on the second bracket serves to distort downward the

acquired human capital of type-2 agents. It is designed to be high enough to achieve two

goals: (i) to ensure that type-2 agents (weakly) prefer pooling at by to pooling at a higher

income, and, (ii) to discourage type-2 agents from choosing an e↵ort mix that would allow

them to achieve separation from their low-ability counterpart at an income level higher

than by.

The marginal tax rate on the second bracket achieves both of these goals because it is

given by the maximum of two quantities. The first term in the max operator represents

the tax rate that guarantees that type-2 agents will not prefer to pool at an income higher

than by. The second term represents the tax rate that guarantees that type-2 agents will

be discouraged from achieving separation from their low-ability counterpart.

In particular, note that the marginal tax rate given by the second term in the max

operator is defined as an expression that depends on both ysep and ✓2
�
e2⇤s , e2⇤q

�
� pse2⇤s �

p2qe
2⇤
q . The former represents the minimum amount of income that type-2 agents would

23Faced with a zero marginal tax rate, type-1 agents would choose es = bes (because of the lower bound

on es set by the mandate), but eq < beq.
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need to earn to achieve separation from their type-1 counterparts in an environment where

T (y) = 0 for y > by. In turn, ysep is a function of emin
q , which represents the minimum

level of eq that allows type-2 agents to achieve separation when choosing es = bes.

The quantity ✓2
�
e2⇤s , e2⇤q

�
�pse2⇤s �p2qe

2⇤
q represents an upper bound for the utility that

could be achieved by type-2 agents under laissez-faire. In particular, given that the e↵ort

mix
�
e2⇤s , e2⇤q

�
is defined as the one that solves the unconstrained maximization problem

(44), the quantity ✓2
�
e2⇤s , e2⇤q

�
�pse2⇤s �p2qe

2⇤
q represents the utility that would be achieved

by type-2 agents in a laissez-faire setting without asymmetric information in the labor

market.

In a setting where T (y) = 0 for y > by, the gain that type-2 agents can achieve by

separating from their low-ability counterpart (instead of choosing the e↵ort mix (bes, beq)

and pooling with them at by) cannot exceed the amount:

⇥
✓2
�
e2⇤s , e2⇤q

�
� pse

2⇤
s � p2qe

2⇤
q

⇤
�
⇥
by � psbes � p2qbeq

⇤
.

Note, however, that this is exactly the income tax that would be paid at y = ysep, based

on the definition of the marginal tax rate provided by the second term in the max operator

of (47). Thus, such a marginal tax rate prevents type-2 agents from being tempted to

achieve separation from their type-1 counterparts.

The binding mandate on es serves primarily to ensure the stability of the PTE. The

reason is that it prevents type-2 agents from choosing an e↵ort mix that would allow

them to earn ŷ while being compensated according to their true productivity ✓2 rather

than the average productivity ✓. More generally, the lower bound on es helps preserve

the PTE because it e↵ectively raises the cost that type-2 agents would have to incur to

achieve separation.

Note also that a binding mandate on es, set at es = bes is an extreme version of a

nonlinear tax on es with a large marginal subsidy for values of es less than es = bes and a

zero marginal tax/subsidy elsewhere. This suggests that the implementation of the PTE

could also be achieved by supplementing a piecewise linear tax on income with a piecewise

linear tax on es with a su�ciently large marginal subsidy on the first bracket.
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Finally, note that public provision of education is another way to implement PTE.

In particular, suppose that the government publicly provides es free of charge up to a

maximum amount bes, so that agents only have to bear the marginal cost ps for those

units of es that exceed bes. The implementation of the PTE could then be achieved by

supplementing this public provision scheme with an income tax eT (y) given by a uniform

upward shift, by an amount psbes, of the income tax function T (y) provided in (45), namely

eT (y) = T (y) + psbes.24

4.3 Relation to existing policy instruments

In the previous subsection, we have shown how supplementing the income tax system

with a means-tested education subsidy or an education mandate serves to implement the

MMO (given by either an STE or a PTE).

Means-tested subsidies for education, which play a dual role of correcting market

failures and achieving redistributive goals, exist in many countries, either as part of the

general tax system or, as has become quite common in recent years, in the form of

income-contingent student loans. Student loans are often o↵ered on favorable terms and

are used to cover tuition fees and/or living expenses, depending on the country. The

size of the subsidy depends on the di↵erence between the tuition charged and the actual

cost of providing the education, as well as the extent to which the loans are o↵ered at

below-market (subsidized) rates. A notable example is Australia’s Higher Education Loan

Program (HELP), where students receive loans to finance their education, which are repaid

once their income exceeds a certain threshold.25 The threshold and repayment rate vary

depending on the borrower’s income level. In 2023–2024 the income threshold is AUD

51,550 and above this threshold the repayment rate varies from 1 percent to a maximum of

24The uniform upward shift is necessary to ensure that the government’s budget constraint is still

satisfied. In particular, under this alternative implementation scheme, each agent will pay an income tax

of psbes at the PTE, allowing the government to raise enough revenue to cover the public expenditures

associated with public provision.

25According to Australian Government Department of Education, Skills and Employment (2020),

approximately 2.8 million Australians will owe AUD 68.1 billion in HELP debt in 2020.
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10 percent for incomes above AUD 151,201. The income-contingent repayment system is

essentially a means-tested progressive tax on graduates, as high-achieving students reach

the income threshold earlier and earn higher wages. Similar income-contingent repayment

systems exist in the United Kingdom and Sweden, as well as in many other countries.26

Education mandates are common in the real world and are often justified on both

e�ciency and equity grounds. Such mandates typically take the form of minimum com-

pulsory schooling laws, commonly applied in the context of primary/secondary education.

We o↵er novel normative justifications for the use of both means-tested education

subsidies and education mandates (in the context of postsecondary education) to promote

redistributive goals by limiting the ability of high-skilled individuals to engage in signaling

that serves to separate them from their low-skilled counterparts. Accordingly, a notable

feature of our analysis is that both policy instruments should target those components of

educational e↵ort in which low-skilled agents have a comparative advantage.

5 Discussion

We next discuss how the case for predistribution in the MMO depends on the observability

assumptions (sections 5.1–5.3), the number of signals (section 5.4), and the number of

types in the economy (section 5.5).

5.1 The case where neither signal is observable

In Online Appendix H we study the case where the government can only observe income.

In this case, due to the weaker policy instruments available, the possibilities for mimickers

26In Sweden, student loans have relatively favorable terms compared to many other countries. Re-

payment usually begins the year after the student graduates, and the repayment period can last up to

25 years. The interest rate on these loans is set by the government and is usually very low. Notably,

the repayment amount is based on the borrower’s income, making it an income-contingent repayment

plan. This means that the amount a graduate pays back each year is a percentage of his or her income

above a certain threshold, ensuring that repayments are a↵ordable. If a borrower’s income is below that

threshold, he or she may be eligible for a repayment waiver for that year.
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to deviate are expanded. The main insight from our analysis is that predistribution is not

feasible with only an income tax. Thus, the ability to tax the signals transmitted in the

labor market is essential to achieve predistribution. In Online Appendix K, we use the

case with only an income tax as a benchmark to numerically quantify the welfare gains of

taxing the quantity signal. Note that the welfare gains from taxing the education signal

arise regardless of whether the MMO features predistribution or not. However, consistent

with Proposition 1, the results show that the MMO tends to feature predistribution when

the productivity variance between the two categories of workers and the discrepancy in

the cost of obtaining the quality signal across types are moderate.

5.2 The case when both signals are taxed

In Online Appendix I we characterize the optimal tax structure under the assumption

that the government can tax both quantity and quality signals. In this case, while the

government can eliminate the information rent from productivity di↵erences between

workers, a residual information rent remains for type-2 workers due to the di↵erence in the

cost of acquiring the quality signal. Thus, the first-best allocation remains unattainable.

The government’s options are the same as when it could only tax the quantity signal:

it can implement a pooling or a separating equilibrium. However, there is a di↵erence

now: with both signals being observable by the government, a mimicker is always forced

to replicate the e↵ort choices of the mimicked type (the mimicker cannot adapt in any

other way). As Online Appendix I shows, this implies that the MMO is always an STE.

When both signals can be taxed/subsidized, a separating equilibrium is cheaper (more

e�cient) than a pooling equilibrium in eliminating the information rent arising from

productivity di↵erences. A key insight from this analysis is that while the feasibility of

predistribution hinges on the ability to tax at least one of the two signals, the desirability

of predistribution depends crucially on the government’s inability to tax both signals.
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5.3 The observable signal is eq instead of es

Our analysis has focused on the case where the signal observable to the government is

es. It is worth noting that while the PTE does not change depending on which of the

two signals is assumed to be observable to the government, the same is not true for the

STE.27 Consequently, the assumption about which signal is observable is not unimportant

for comparing the welfare properties of pooling and separating tax equilibria. For the

Cobb-Douglas example studied in section 2.5, one can show that the STE achieved when

the government observes es is always welfare superior to the STE achieved when the

government observes eq.28 This implies that a PTE becomes relatively more attractive

when the signal observed by the government is the one for which type-2 agents have a

comparative advantage.

With respect to wedges, the most interesting di↵erence between the STE when the

observable signal is es and the STE when the observable signal is eq is that in the latter

case it is a priori ambiguous in which direction it is optimal to distort the e↵ort mix

of type-1 agents. This contrasts with the result provided by (30) for the case where

the observable signal is es, namely that the e↵ort mix chosen by type-1 agents should

be distorted towards the e↵ort dimension at which they have a comparative advantage

(i.e., es). When the observable signal is eq instead of es, it may happen that mimicking-

deterrence considerations justify distorting the e↵ort mix chosen by type-1 agents towards

eq.29

5.4 More than two signals

As noted above, if the government cannot observe and tax/subsidize (both income and) all

signals, then it can only reduce (but not eliminate) the information rent from productivity

di↵erences. One might therefore think that a pooling equilibrium would be better for

27An intuition for this result is provided in the first part of Online Appendix J.

28However, this is not a general result, and one can easily construct counterexamples where the opposite

result holds.

29An intuition for this result is provided in the second part of Online Appendix J.
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equity, and that the case for pooling would be stronger, if fewer signals were taxed. The

problem with this argument is that it ignores the fact that pooling must be sustainable

in order to be socially desirable. In general, where there are n signals, pooling will be

sustainable either if the government taxes (at least) n � 1 signals, or if it taxes n � j

signals (with 1 < j < n) and the high-skill types have no comparative advantage in the

untaxed signals.

A possible example of adding more signals is when individuals can commit to their

hours of work/availability (in addition to the quality and quantity of educational e↵ort).

Maintaining our assumptions that p1s = p2s and p1q > p2q, and assuming that work/leisure

preferences are the same across types and that labor costs are separable, the result would

be that conditioning the tax function on both income and the quantity signal es would

not be su�cient to make predistribution feasible. The reason is that within the set of

untaxed signals (in this case eq and hours worked), the high-skilled types have a compar-

ative advantage in one dimension (eq). However, predistribution would be feasible if the

observable signal were eq (instead of es). This is because in such a case the tax function

could be conditioned on both income and eq, implying that the high-skilled types have no

comparative advantage within the set of untaxed signals (es and hours worked).

Of course, endogenizing labor supply in this way hinges on the assumption that the

worker pre-commits to his workload, and then the firm uses this information (as well as

information about the worker’s educational background) to decide on the level of com-

pensation. Alternatively, one could assume that the order is reversed (the firm is the first

mover), in which case the model combines signaling (via ex-ante investment in education)

with screening (via ex-post choice of hours), making the analysis much more complicated.

This latter configuration, while interesting, is beyond the scope of the current analysis.

Before concluding this subsection, a note on the measurement of comparative advan-

tage is in order. For simplicity, our model assumes that agents are free to adjust the signal

(quantity and quality e↵orts are continuous variables). In reality, such adjustment is usu-

ally more constrained. For example, schooling may be limited to a high school diploma

or a college degree, and working hours (except in the “gig” economy) may be limited
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to full-time (say, 40 hours per week) or part-time (20 hours per week). This should be

taken into account, at least empirically, when assessing comparative advantage. Within

the limited set, high-skilled types may not be able to distinguish themselves from their

low-skilled counterparts.

5.5 More than two types

To keep our analysis tractable, we have limited our attention to a model with two types.

The case with more than two types is more complex because the number of incentive

constraints increases significantly. There are also more tax equilibrium configurations to

consider, since some types may be pooled while others are separated. Nevertheless, the

main qualitative insight that constrained e�cient allocations may involve predistribution

is not sensitive to the number of types. Several features stand out, however.

First, as in the two-type case, predistribution is not feasible when neither signal is

observable, since the high-skill types can always separate from the low-skill types. Second,

when only the quantity signal is observable, partial pooling (bunching) becomes feasible

and may be superior to full pooling and full separation. Third, when both signals are

taxed, while a pooling equilibrium with full wage compression can still be shown to be

suboptimal (using a similar argument as in Online Appendix I), partial pooling (bunching

of a subset of types) can be shown to be desirable and superior to full separation. The

reason is that bunching can serve to mitigate the downward (“adjacent”) IC constraints

(type j mimicking type j � 1), so as to reduce the information rent associated with the

cost of acquiring the quality signal. This serves to enhance redistribution through the

income channel while achieving redistribution through the wage channel.30 The reason

that bunching is desirable is not to eliminate the information rents associated with the

di↵erence in productivity between types (the latter is taken care of by the ability to tax

30For example, consider the case with three types 1, 2, and 3, where 3 represents the high-skilled

type and 1 represents the low-skilled agent. Implementing a hybrid allocation in which types 1 and 2

are bunched together could be superior to a fully separating allocation by allowing a combination of

redistribution from type 3 to its low-skilled counterparts and predistribution between types 1 and 2.
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both signals), but rather to increase redistribution along the income channel. Pooling,

on the other hand, does not achieve redistribution through the income channel and is

therefore suboptimal.

6 Concluding remarks

In this paper, we have introduced a new dimension to the traditional Mirrleesian frame-

work by incorporating a second layer of asymmetric information—between workers and

employers—and by allowing the tax system to depend on both income and observable sig-

nals in the labor market. Our analysis examines how workers engage in multidimensional

signaling through both the quantity and quality of education, and how these signals a↵ect

optimal tax policies.

Using a mechanism design approach to the analysis of optimal income taxation, we

show that allocations that maximize the utility of low-skilled workers, subject to informa-

tion and resource constraints, can lead to either separating or pooling equilibria. In the

case of separating equilibria, incentive constraints operate in both directions: low-skilled

workers may attempt to mimic high-skilled workers to obtain higher compensation, while

high-skilled workers may mimic low-skilled workers to reduce their tax burden. This

dynamic implies that the e↵ect of the second layer of asymmetric information (between

workers and firms) on the level of social welfare achievable through optimal tax policy is

generally ambiguous.

In pooling equilibria, predistribution occurs through wage compression, with changes

in the wage structure creating cross-subsidies between di↵erent skill levels. However,

such predistribution is only feasible if signaling activities in the labor market are taxed,

making such taxes complementary to traditional instruments for achieving redistribution,

such as progressive income taxation. From a policy perspective, we suggest that education

mandates and means-tested education subsidies, which are traditionally used to address

market failures, can also function as redistributive instruments by mitigating the e↵ects

of signaling and achieving predistribution.

Although our model is based on a simplified two-type agent framework, the central
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insights are likely to extend to more complex settings involving multiple types and signals.

In these more complicated settings, the social optimum might combine both predistribu-

tion and traditional redistribution, rather than feature full separation or full pooling as

in the two-type case.

Our findings suggest the potential e↵ectiveness not only of education mandates and

subsidies, but also of a wide range of policies that a↵ect incentives to engage in signaling.

These could include policies such as penalties for students who complete their education

unusually quickly or restrictions on simultaneous enrollment in multiple programs. Re-

fining income-contingent student loan programs to better target subsidies in areas where

low-skilled workers have a comparative advantage would further improve redistributive

outcomes. In addition, anti-discrimination laws can play an important role in promoting

a more equitable wage distribution by reducing the ability of firms to engage in screening

or statistical discrimination.

In conclusion, our paper suggests that predistribution through wage compression is

an important and underexplored mechanism for redistribution in the real economy. Fu-

ture empirical research is needed to examine how policies that limit signaling and screen-

ing—whether through educational choice or broader labor market interventions—can pro-

mote more equitable compensation for workers at di↵erent productivity levels. Such work

would be crucial for guiding policymakers in designing e↵ective strategies to reduce in-

equality.
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Online Appendix

Optimal Redistribution and Education Signaling

By Spencer Bastani, Tomer Blumkin, and Luca Micheletto

January, 2025.

A Existence of MMO

Consider the optimization problem in Definition 1. This is essentially a nested opti-

mization in which the MMO e↵ectively chooses between separating and pooling optimal

allocations, depending on which yields the highest level of social welfare. Note that an

optimal pooling allocation exists trivially, since it can be expressed as the solution to

an unconstrained optimization problem with a strictly concave objective function that

reaches a (unique) global maximum due to the Inada conditions. As for the optimal

separating allocation, we show below that the feasible set defined by the constraints is

nonempty and compact, which together with the continuity of the objective function im-

ply that an optimal separating allocation always exists by the extreme value theorem.

Together, this establishes that the optimization problem in Definition 1 is well defined.

Non-emptiness of the set of feasible separating allocations We prove that the

feasible set is non empty by constructing an incentive compatible separating allocation in

which y1 = e1s = 0 (implying e1q = be2q = 0). Invert the function y = ✓h (es, eq) to obtain

eq = f
�
y
✓ , es

�
, and further denote by y⇤ and e⇤s the values of y and es that maximize

y � pses � p2qf
�

y
✓2 , es

�
. Consider the two quadruplets

(A1)
�
y1, c1, e1s, e

1
q

�
=

✓
0, �2


y⇤ � pse

⇤
s � p2qf

✓
y⇤

✓2
, e⇤s

◆�
, 0, 0

◆

and

(A2)
�
y2, c2, e2s, e

2
q

�
=

✓
y⇤, y⇤ � �1


y⇤ � pse

⇤
s � p2qf

✓
y⇤

✓2
, e⇤s

◆�
, e⇤s, f

✓
y⇤

✓2
, e⇤s

◆◆
.

It is straightforward to verify that they satisfy the government revenue constraint (21):

(A3)
�
y1 � c1

�
�1 +

�
y2 � c2

�
�2 = ��1�2


y⇤ � pse

⇤
s � p2qf

✓
y⇤

✓2
, e⇤s

◆�

+ �2y⇤ � �2

⇢
y⇤ � �1


y⇤ � pse

⇤
s � p2qf

✓
y⇤

✓2
, e⇤s

◆��
= 0.
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Furthermore, they also satisfy the incentive constraints (23) and (24), the former as an

equality and the latter as a strict inequality. In particular, taking into account that
�
y1, c1, e1s, e

1
q

�
=
�
0, �2

⇥
y⇤ � pse⇤s � p2qf

�
y⇤

✓2 , e
⇤
s

�⇤
, 0, 0

�
implies R2

�
e1s, be2q

�
= R1

�
e1s, e

1
q

�
=

0, constraint (23) simplifies to

(A4) c2 �R2
�
e2s, e

2
q

�
� c1,

and constraint (24) simplifies to

(A5) c1 � c2 �R1
�
e2s, e

2
q

�
.

Substituting y⇤ � �1
⇥
y⇤ � pse⇤s � p2qf

�
y⇤

✓2 , e
⇤
s

�⇤
for c2, �2

⇥
y⇤ � pse⇤s � p2qf

�
y⇤

✓2 , e
⇤
s

�⇤
for c1,

e⇤s for e2s and f
�
y⇤

✓2 , e
⇤
s

�
for e2q, constraints (A4) and (A5) become, respectively:

y⇤��1


y⇤ � pse

⇤
s � p2qf

✓
y⇤

✓2
, e⇤s

◆�
�pse

⇤
s�p2qf

✓
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✓2
, e⇤s

◆
= �2
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s � p2qf
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◆�
,

�2
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s � p2qf
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y⇤
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, e⇤s

◆�
> y⇤��1
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, e⇤s

◆�
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✓
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◆
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The key point to note is that if type-1 agents refrain from investing in education, the

information rent enjoyed by type-2 agents can be driven to zero. This implies that the

right-hand side of the constraint (23) takes the same value as the left-hand side of the

constraint (24). Thus, if the incentive constraint (23) that applies to type-2 agents is

satisfied, the incentive constraint (24) that applies to type-1 agents is necessarily slack

(due to the assumption that p1q > p2q). This concludes the proof.

Compactness of the set of feasible separating allocations Let S denote the set

of feasible separating allocations defined by all allocations with
�
e1s, e

1
q

�
6=
�
e2s, e

2
q

�
that

satisfy the constraints in Definition 1. Since we restrict our analysis to subsets of a

Euclidean space, S is compact if and only if it is closed and bounded. S is bounded by

the Inada conditions. To prove that S is closed, we need to show that S contains all its

limit points. We will prove that S is closed by contradiction. Suppose S is not closed,

and hence there exists a sequence of feasible separating allocations that converges to an

allocation that is not an element of S. There are two possible limit points to consider,

one with
�
e1s, e

1
q

�
6=
�
e2s, e

2
q

�
and the other with

�
e1s, e

1
q

�
=
�
e2s, e

2
q

�
. In the first case, due to

the continuity of the constraints defining a separating allocation on the set S, the limit

allocation is necessarily an element of S. Therefore, we consider the only other possibility,

namely a sequence of feasible allocations with
�
e1s, e

1
q

�
6=
�
e2s, e

2
q

�
, which converges to an

allocation where
�
e1s, e

1
q

�
=
�
e2s, e

2
q

�
.
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Rewrite the incentive constraint in (23) to get

g(e1s, e
1
q, e

2
s, e

2
q) = c1 � c2 +R2

�
e2s, e

2
q

�
�R2

�
e1s, ê

2
q

�
 0,(A6)

where R2
�
e1s, ê

2
q

�
< R2(e1s, e

1
q) since ê2q < e1q. Note that the incentive constraint in (24)

implies that

c1 � c2 � R1
�
e1s, e

1
q

�
�R1

�
e2s, e

2
q

�
.(A7)

Thus, we have

g(e1s, e
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> R1
�
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2
q
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�R2
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e1s, e

1
q

�
.(A9)

Since the right side of (A9) converges to zero as (e1s, e
1
q) ! (e2s, e

2
q), condition (A6) is

necessarily violated if k(e1s, e1q) � (e2s, e
2
q)k < � for some su�ciently small � > 0. We thus

obtained a contradiction to the existence of a limit allocation in which e↵ort levels are

pooled (identical between types), since there exists a small neighborhood of the (pre-

sumed) limit point that contains no feasible separating allocations. We conclude that S
must be closed.

B Proof of Proposition 1

Part (a) We first prove that there exist some " > 0 and � > 0, where " = ✓2 � ✓1 and

� = p1q � p2q, such that the PTE is welfare superior to the separating tax equilibrium. We

let ps = 1 without loss of generality; fix p1q, ✓
1, and �1, and let " = � > 0 and small. For

the set of given parameters, (�1, ✓1, p1q, "), we can solve for the optimal separating and

pooling optima (since both exist, see appendix A). Denote the resulting max-min welfare

measures by:

W sep(�1, ✓1, p1q, ")(B1)

W pool(�1, ✓1, p1q, ")(B2)

Obviously, for " = 0, W sep = W pool. We will show that for " > 0 and small, W sep < W pool.

Using a first-order approximation, it su�ces to show this:

@W sep(�1, ✓1, p1q, ")

@"

����
"=0

<
@W pool(�1, ✓1, p1q, ")

@"

����
"=0

.(B3)
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The separating optimum is given by the solution of the following maximization program

(formulated in a Lagrangian form for convenience):

W sep(") = max
n
[c1 � e1s � e1qp

1
q] + µ[�1(✓1h(e1s, e

1
q)� c1) + (1� �1)((✓1 + ")h(e2s, e

2
q)� c2)]

+ �[(c2 � e2s � e2q(p
1
q � "))� (c1 � e1s � ê1q(p

1
q � "))]

+ ⌘ · [✓1h(e1s, e1q)� (✓1 + (1� �1)")h(e1s, ê
1
q)]
o
,

(B4)

where µ,�, and ⌘ correspond to the Lagrange multipliers associated with the revenue con-

straint, the type-2 IC-constraint, and the condition implicitly defining the o↵-equilibrium

quality signal e↵ort chosen by a type-2 mimicker (the e↵ort is defined by ê1q). Note that

we implicitly assume that the IC-constraint of the low-skilled (type-1) agent is slack.

The pooling optimum is given by the following maximization program:

W pool(") = max{(✓1 + (1� �1)")h(es, eq)� es � eqp
1
q}.(B5)

Using the envelope theorem, it follows that:

@W pool(")

@"

����
"=0

= (1� �1)h(e⇤s, e
⇤
q)(B6)

@W sep(")

@"

����
"=0

= (µ⇤ � ⌘⇤)(1� �1)h(e⇤s, e
⇤
q),(B7)

where the asterisk (⇤) refers to the optimal allocations under the separation and pooling

configurations. Note that for " = 0, the e↵ort choices coincide.

To prove our claim, it su�ces to show that µ⇤ � ⌘⇤ < 1. Deriving the first-order

conditions of the separating optimal allocation with respect to e1q, c
1, c2 and ê1q, evaluated

at " = 0, yields the following:

�p1q + µ⇤�1✓1
@h

@e1q
+ ⌘⇤✓1

@h

@e1q
= 0(B8)

1� µ⇤�1 � �⇤ = 0(B9)

�µ⇤(1� �1) + �⇤ = 0(B10)

�⇤p1q � ⌘⇤✓1
@h

@e1q
= 0.(B11)
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After some algebraic manipulations, one can show that:

µ⇤ = 1(B12)

�⇤ = (1� �1)(B13)

p1q = ✓1
@h

@e1q
(B14)

⌘⇤ =
(1� �1)p1q

✓1 @h
@e1q

< 1.(B15)

Thus, µ⇤ � ⌘⇤ < 1 as needed (note that p1q = ✓1 @h
@e1q

defines the e�ciency condition for the

quality signal e↵ort choice, which trivially holds for " = 0). Note that in the maximization

program associated with the separating allocation, we have assumed that the incentive

constraint associated with the low-skilled (type-1) agents is slack. It clearly follows that,

under the parametric assumptions of the proposition, the pooling allocation is welfare

superior to the separating allocation when we account for this additional (potentially

binding) constraint. This concludes the proof of part (a).

Part (b) Fixing p1q, ✓
2, and �1, we next prove that for any di↵erence in the productivity

between the two types of workers, 0 < "  ✓2, there exists 0  �⇤(✏)  p1q, representing the

di↵erence in the cost of acquiring the quality signal, such that the separating allocation is

welfare superior to the pooling allocation when � > �⇤(✏), whereas the pooling allocation

is welfare superior to the separating allocation when � < �⇤(✏). Reformulation of the

maximization program associated with the optimal separating allocation (similar to part

(a)), but now taking into account the type-1 incentive constraint:

W sep(", �) = max
n
[c1 � e1s � e1qp

1
q] + µ[�1((✓2 � ")h(e1s, e

1
q)� c1)

+ (1� �1)(✓2h(e2s, e
2
q)� c2)] + �[(c2 � e2s � e2q(p

1
q � �))

� (c1 � e1s � ê1q(p
1
q � �))] + ⌘[✓1h(e1s, e

1
q)� (✓2 � �1")h(e1s, ê

1
q)]

+ �[(c1 � e1s � e1qp
1
q)� (c2 � e2s � e2qp

1
q)]
o
,(B16)

where µ,�, ⌘, and � correspond to the Lagrange multipliers associated with the revenue

constraint, the type-2 IC-constraint, the condition implicitly defining the o↵-equilibrium

quality signal e↵ort chosen by a type-2 mimicker (the e↵ort is defined by ê1q), and the

type-1 IC-constraint. Reformulation of the maximization program associated with the

optimal pooling allocation yields:

W pool(", �) = max{(✓2 � �1")h(es, eq)� es � eqp
1
q}.(B17)
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Using the envelope theorem implies that

@W sep(", �)

@�
= �⇤[e2⇤q � ê1⇤q ] > 0,(B18)

where the asterisk (⇤) refers to the optimal allocation under the separating equilibrium,

where �⇤ > 0 denotes the multiplier associated with the type-2 binding IC constraint due

to the max-min social welfare function, and where e2⇤q > ê1⇤q denote the quality signal

e↵ort levels associated with type-2 and a mimicking type-2, respectively. Note that the

strict inequality follows from the construction of the separating equilibrium (note that a

separating equilibrium always exists, even if � ! 0, in which case ê1q = e1q = es = 0).

Clearly, @W pool(",�)
@� = 0, by virtue of the max-min welfare function and as by construc-

tion both types choose the same bundle under a pooling allocation. By virtue of the signs

of the derivatives, fixing ", it follows thatW sep(", �) andW pool(", �) intersect at most once.

Let �⇤(✏) denote the implicit solution to W sep(", �) = W pool(", �) if it exists, and otherwise

let �⇤(✏) = 0 if W sep(", �) > W pool(", �) for all � and �⇤(✏) = p1q if W sep(", �) < W pool(", �)

for all �, which completes the proof of part (b).

Part (c) Fixing p1q, ✓
2, and �1, and denoting by " and �, as in the previous parts, the

di↵erence in productivity and the cost of acquiring the quality signal, respectively, we

turn next to prove that there exists some cuto↵, 0 < "⇤ < ✓2, such that �⇤(") = 0 for any

" > "⇤, while �⇤(") > 0 for any " < "⇤.

Consider the case where � = 0. Note that in this case the optimal separating equi-

librium is given by the two triplets: (c1, e1s = e1q = 0) and (c2, e2s, e
2
q), which maximize c1

subject to:

c2 � (e2s + e2qp
1
q) = c1(B19)

(1� �1)✓2h(e2s, e
2
q) = �1c1 + (1� �1)c2(B20)

where the first equality condition (B19) denotes the binding incentive constraint (for both

types!) and the second equality condition (B20) denotes the binding revenue constraint.

Since � = 0, the two types of agents are observationally equivalent, and thus for the

separating allocation to be incentive compatible, the output produced by the low-skilled

(type-1) agents must be zero. If output were bounded away from zero, the high-skilled

(type-2) agents could mimic by choosing (o↵-equilibrium) a lower level of the quality

signal than the level chosen (on the equilibrium path) by the type-1 agents. Then the two

IC-constraints associated with the two types of workers could not hold simultaneously.

To see this formally, assume that the output level associated with the type-1 bundle
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is positive. The IC constraints associated with type-2 and type-1 would then be:

c2 � (e2s + e2qp
1
q) � c1 � (e1s + ê1qp

1
q)(B21)

c1 � (e1s + e1qp
1
q) � c2 � (e2s + e2qp

1
q)(B22)

where e1q > ê1q and ê1q being the implicit solution to (✓2 � ")h(e1s, e
1
q) = (✓2 � �1")h(e1s, ê

1
q).

However, using the two IC-constraints implies that:

(B23) c1 � (e1s + e1qp
1
q) � c2 � (e2s + e2qp

1
q) � c1 � (e1s + ê1qp

1
q)

Hence,

(B24) c1 � (e1s + e1qp
1
q) � c1 � (e1s + ê1qp

1
q) , ê1qp

1
q � e1qp

1
q

but this clearly contradicts e1q > ê1q.

Using the two binding conditions (B19) and (B20) yields that the welfare level asso-

ciated with the optimal separating equilibrium is given by:

(B25) W sep(✏, � = 0) = max{(1� �1)[✓2h(e2s, e
2
q)� (e2s + e2qp

1
q)]}

The optimal pooling equilibrium is given by:

(B26) W pool(", � = 0) = max{(✓2 � �1")h(es, eq)� (es + eqp
1
q)}

Let ⌦(", � = 0) ⌘ W sep(✏, � = 0) �W pool(", � = 0). It is easy to verify that ⌦(0, � =

0) < 0, and ⌦(✓2, � = 0) > 0. Thus, by continuity, using the Intermediate Value Theorem,

there exists some 0 < "⇤ < ✓2 such that ⌦("⇤, � = 0) = 0.

Denoting by e⇤s(") and e⇤q(") the e↵ort levels associated with the quantity and quality

signals in the optimal pooling equilibrium when the productivity di↵erence is ", using the

envelope theorem, it follows that

(B27)
@⌦(", � = 0)

@"
= �1h[e⇤s("), e

⇤
q(")] > 0.

It follows that for all " < "⇤, W sep(✏, � = 0) < W pool(", � = 0), while for all " > "⇤,

W sep(✏, � = 0) > W pool(", � = 0). This completes the proof.

C Proof of Proposition 2

Let " ! ✓2 (with " < ✓2) and further let � = 0, hence p1q = p2q = pq. Without loss of

generality let ps = 1. Our result will extend by continuity to su�ciently small values of
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� > 0. As shown in the proof of part (c) of Proposition 1 [see Appendix B, Eqs. (B19) and

(B20)], under the above parametric assumptions, the MMO is given by an STE in which

the e↵ort levels associated with type-1 (low-skilled) workers are given by e1s = e1q = 0.

Formally, the MMO is given by the solution to the following maximization program:

P1

max
e2s,e

2
q ,c

1,c2

�
c1
 

subject to:(C1)

c2 � e2s � pqe
2
q = c1,(C2)

�2✓2h(e2s, e
2
q) = �1c1 + �2c2,(C3)

where (C2) and (C3) replicate (B19) and (B20), representing the binding IC-constraint

(associated with both type-1 and type-2 workers) and the binding revenue constraint,

respectively.

Now consider the MMO associated with an STE under a “Mirrleesian” setup in which

firms observe worker types (but the government doesn’t):

P2

max
e1s,e

1
q ,e

2
s,e

2
q ,ê

1
q ,c

1,c2

�
c1 � e1s � pqe

1
q

 
subject to:(C4)

c2 � e2s � pqe
2
q = c1 � e1s � pqê

1
q,(C5)

�1✓1h(e1s, e
1
q) + �2✓2h(e2s, e

2
q) = �1c1 + �2c2,(C6)

✓1h(e1s, e
1
q) = ✓2h(e1s, ê

1
q),(C7)

where condition (C5) is the binding IC-constraint associated with type-2 workers (the IC-

constraint associated with type-1 workers is slack due to a single-crossing property and

is therefore omitted), and condition (C6) is the binding revenue constraint. The quality

e↵ort chosen by the type-2 mimicker is implicitly given by condition (C7), which states

that type-2 receives the same compensation as type-1, y1 = ✓1h(e1s, e
1
q), and chooses the

same quantity e↵ort as type-1, e1s. However, type-2 agents choose a lower quality e↵ort

level than type-1 agents, ê1q  e1q, with strict inequality when e1s > 0 and e1q > 0, and are

compensated according to their true productivity, ✓2.31

Comparing the maximization programs P1 and P2, one can see that problem P1

is obtained by setting the e↵ort levels associated with type-1 workers to zero in the

31Recall the di↵erence from the case where types are unobservable by firms, in which a mimicking

type-2 will choose a lower quality of e↵ort than type-1 but higher than ê1q, and be rewarded according to

average productivity rather than true productivity.
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formulation of problemP2. Thus, the optimal solution to problemP1 is a feasible solution

(but not necessarily the optimal one) to problem P2. To show that the maximization

program P2 yields a higher level of welfare than the maximization program P1, we

construct an alternative feasible allocation with strictly positive e↵ort levels for type-1

workers and show that it increases their level of utility.

Formally, let the allocation (e1⇤s = e1⇤q = 0, e2⇤s , e2⇤q , c1⇤, c2⇤) denote the optimal solution

for the program P1, and consider the following small perturbation of this allocation: e2s =

e2⇤s , e2q = e2⇤q , e1s = e1q = � > 0 where � is small, c1 = c1⇤+�1✓1h(�, �), c2 = c2⇤+�1✓1h(�, �),

and ê1q is implicitly given by ✓1h(�, �) = ✓2h(�, ê1q). In other words, the e↵ort vector of

the type-1 worker is raised slightly above zero, and the resulting fiscal surplus is returned

to both types of workers as a lump-sum transfer. The proposed perturbation leads to

a relaxation of the type-2 worker’s IC-constraint and satisfies the revenue constraint.

By continuity, the perturbation maintains the slack in the type-1 worker’s IC-constraint.

Thus, the perturbed allocation is a feasible solution for program P2. The change in type-1

utility due to the proposed perturbation is given by

�u1 = �1✓1h(�, �)� �(1 + pq).(C8)

hence,

�u1 > 0 , h(�, �)

�
>

(1 + pq)

�1✓1
(C9)

Since lim�!0

h
h(�,�)

�

i
= lim�!0[h1(�, �) + h2(�, �)] = 1 by the Inada conditions of the

human capital production function, it follows that for � su�ciently small, �u1 > 0. This

concludes the proof.

D Supplementary analysis for Figure 1

D.1 Detailed discussion about the shape of the regions in Figure

1

The vertical axis � = 0 Along the vertical axis, where � = 0 (i.e., p1q = p2q), pooling

dominates separation for almost all values of ✏. To understand this result, note that when

p1q = p2q, it must necessarily be the case that y1 = e1s = 0 in the STE.32 The fact that type-

32The reason is as follows. When p1q = p2q, the left side of the downward IC constraint (23) coincides

with the right side of the upward IC constraint (24) (since p1q = p2q implies R2
�
e2s, e

2
q

�
= R1

�
e2s, e

2
q

�
). At

the same time, however, the right-hand side of the downward IC constraint (23) is strictly larger than

the left-hand side of the upward IC constraint (24) whenever type-1 agents are required to produce a
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1 agents are idle in the STE is not a major concern when ✓1 is very small (corresponding

in our Figure 1 to cases where ✏ is large): when their productivity is very small, the

e�ciency loss from leaving them idle is also very small. However, as ✓1 increases (i.e., as

✏ decreases in Figure 1), the e�ciency loss associated with setting y1 = 0 becomes larger

and larger.

Small � > 0 Now consider the case where � is small but strictly positive. By replicating

the choices of type-2 agents and acting as mimickers, type-1 agents achieve a utility that

is strictly lower than the utility of type-2 agents; however, given the assumption that � is

small, the di↵erence between the two utilities is also small. Thus, in order to jointly satisfy

the IC constraints (23)–(24), the information rent enjoyed by type-2 agents must also be

small. This information rent, which reflects the di↵erence between the utility of type-2

agents behaving as mimickers and the utility of type-1 agents, is given by p1qe
1
q � p2qbe2q

and can be decomposed into two components. One is due to the fact that � > 0, and

the other is due to the fact that, for y1 > 0, be2q < e1q. The latter component reflects the

information rent arising from productivity di↵erences and, under the assumption given by

(26), it is given by

⇣
y1

✓1

⌘ 1
� �

⇣
y1

✓

⌘ 1
�

�
1
e1s
, and is therefore increasing in y1 (and increasing

in the productivity di↵erence between the two types).

Thus, if � is small, an STE will be characterized by a value of y1 that is positive but

necessarily small. Whether this leads to a large or small e�ciency loss depends on the

productivity of type-1 agents. In particular, forcing y1 to be very small is more costly the

higher the productivity of type-1 agents (i.e. the lower is ✏ in Figure 1). This observation

seems to suggest that when � is small, a PTE dominates an STE, provided that the

productivity of type-1 agents is su�ciently large (i.e., ✏ is su�ciently low). Looking at

Figure 1, we can see that this intuition is only partially confirmed. In particular, we can

see that for small values of �, an STE dominates a PTE both when ✏ is su�ciently high

and when it is su�ciently low. The fact that separating dominates when ✏ is su�ciently

high is consistent with the intuition that follows from our argument.

What remains to be explained is why STE dominates PTE when ✏ is su�ciently small.

When ✏ is small, ✓1 is close to ✓2, and this implies that in an STE, the information rent

to type-2 agents (arising from the di↵erence in productivities) is small. But this in turn

means that the equity gains from moving from an STE to a PTE are also small. The reason

is that these equity gains arise from the elimination of the information rent associated

with the di↵erence in productivities enjoyed by type-2 agents in an STE.

positive amount of output. Thus, for p1q = p2q, the IC constraints (23)–(24) can be jointly satisfied only

if y1 = 0, implying that type-1 agents remain idle.
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Large � Figure 1 also shows that for su�ciently large values of �, an STE is always

superior to a PTE. Two things should be noted when interpreting this result. First, if �

is su�ciently large, the upward IC constraint (constraint (24)) is slack regardless of the

value of ✏, and therefore the e↵ort exerted by type-2 agents is first-best optimal in an STE

(i.e., it satisfies the equality h1

�
e2s, e

2
q

�
/h2

�
e2s, e

2
q

�
= ps/p2q). Second, for a given value of

✏, the PTE is invariant to changes in � (in our Figure 1, a variation in � corresponds to a

variation in p2q, for given p1q); this implies that, as � increases, the e�ciency loss associated

with pooling all agents at a common e↵ort mix becomes larger. Thus, for su�ciently large

values of �, the e�ciency losses of switching from a separating to a pooling equilibrium

outweigh any possible equity gains.

Finally, two remarks are in order regarding the e↵ect of changes in the relative size of

the two groups of individuals and the e↵ect of changes in the parameter � on the trade-o↵

between STE and PTE. To save space, we do not provide the figures, but the simulations

are available upon request.

The role of �1 A PTE tends to become more attractive when the size of the two groups

of agents is more similar. This is because when �1 is very small, the e�ciency cost of

leaving type-1 agents idle becomes small, regardless of their productivity. Thus, even if

IC considerations require that y1 be set close to zero in an STE, the associated e�ciency

cost is negligible. At the other extreme, when �1 is very large, the di↵erence between

✓ and ✓1 also becomes small, implying that in an STE the information rent to type-2

agents, arising from the productivity di↵erence, is quite small. This in turn implies that

the equity gains of moving from an STE to a PTE are also small.

The role of � A PTE tends to become more attractive when � is small, i.e., when the

degree of decreasing returns to scale characterizing the h function is large. Intuitively,

note that the output production function is given by a product of ✓, the innate produc-

tivity, and h, the acquired human capital, and exhibits overall increasing returns to scale.

Consequently, there is an e�ciency loss associated with pooling all agents in a common ef-

fort mix relative to a separating allocation. As � increases and the h function approaches

constant returns to scale, the e�ciency loss becomes more pronounced, making pooling

less desirable.33

33The argument is similar to a study by Cremer et al. (2011), which shows that a meritocratic education

system (a “separating” allocation with unequal wages) supplemented by a progressive labor income tax

system would be preferable to an egalitarian education system (a “pooling” allocation with equal wages)

from a redistributive perspective.
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D.2 Closed-form solutions for social welfare and derivations for

Figure 1

In the first part of this appendix we derive the pooling tax equilibrium and the associated

social welfare value. In the second and third parts, we derive the optimal allocation under

a separating tax equilibrium and the associated value of social welfare, first for the case

when the upward IC constraint is not binding and then for the case when it is binding.

Finally, in the last part of the appendix, we use our results to derive the inequalities

characterizing the regions described in Figure 1. All results are based on the functional

form assumption (26).

D.2.1 Pooling tax equilibrium

When implementing a pooling equilibrium, the government chooses (y, es) to maximize

(D1) u1 = y � pses � p1qeq(y, es, ✓̄),

where eq(y, es, ✓̄) is the value of eq which solves the equation y = (eseq)� ✓̄, i.e. beq =
�
y
✓̄

� 1
� 1

es
.

We can then rewrite the government’s objective function as

(D2) Upool = y � pses �
⇣y
✓̄

⌘ 1
� p1q
es
,

which has to be maximized by the optimal choice of y and es.

The first order conditions with respect to es and y are respectively given by

⇣y
✓̄

⌘ 1
� p1q
(es)

2 = ps,(D3)

p1q
es

1

�✓̄

⇣y
✓̄

⌘ 1��
�

= 1.(D4)

Dividing (D3) by (D4) gives

(D5) y =
pses
�

.

Noticing that (D3) can be restated as

(D6)
⇣y
✓̄

⌘ 1
� p1q
es

= pses,

it follows that, by using (D5) and (D6), we can re-express Upool, given by (D2), as

(D7) Upool = y � pses �
⇣y
✓̄

⌘ 1
� p1q
es

=
pses
�

� pses � pses =
1� 2�

�
pses.
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Finally, given that from (D3) we have

(D8) (es)
2 =

p1q
ps

⇣y
✓̄

⌘ 1
�
,

using (D5) we get that

(es)
2 =

p1q
ps

✓
pses
�✓̄

◆ 1
�

,

which implies

(es)
2��1

� =
p1q
ps

✓
ps
�✓̄

◆ 1
�

,

and therefore

(D9) es = (ps)
1��
�

�
2��1

�
p1q
� �

2��1

✓
1

✓̄�

◆ �
2��1

1
�

=

�
✓̄�
� 1

1�2�

(ps)
1��
1�2�

�
p1q
� �

1�2�

.

We can then conclude that

Upool =
1� 2�

�
pses =

1� 2�

�
ps

(ps)
1��
2��1

�
p1q
� �

1�2�

�
✓̄�
� 1

1�2� =
1� 2�

�

"
✓̄�

�
psp1q

��

# 1
1�2�

.(D10)

Since we have that y = pses
� , we can equivalently express Upool as

(D11) Upool = (1� 2�) y,

where

(D12) y =

�
✓̄
� 1

1�2� �
2�

1�2�

�
psp1q

� �
1�2�

.

D.2.2 Separating tax equilibrium when only the downward IC-constraint is

binding

Consider now the separating tax equilibrium. The upward and downward IC-constraints

are given, respectively, by:

c1 � pse
1
s �

✓
y1

✓1

◆ 1
� p1q
e1s

� c2 � pse
2
s �

✓
y2

✓2

◆ 1
� p1q
e2s
,(D13)

c2 � pse
2
s �

✓
y2

✓2

◆ 1
� p2q
e2s

� c1 � pse
1
s �

✓
y1

✓̄

◆ 1
� p2q
e1s
.(D14)

We first proceed to solve the government’s problem assuming that the upward IC con-

straint can be neglected. Substituting the resource constraint of the economy into the
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government’s objective function, we can rewrite the government’s problem as follows:

max
y2,y1,c2,e1s,e

2
s

�2

�1

�
y2 � c2

�
+ y1 � pse

1
s � p1q

✓
y1

✓1

◆ 1
� 1

e1s

subject to the downward IC-constraint

(D15) c2 � �2

�1

�
y2 � c2

�
� y1 � pse

2
s �

✓
y2

✓2

◆ 1
� p2q
e2s

+ pse
1
s +

✓
y1

✓̄

◆ 1
� p2q
e1s

� 0.

Denote by � the multiplier attached to the IC-constraint (D15). From the first order

condition with respect to c2 we have that � = �2. Taking this into account, the first order

conditions with respect to e1s, e
2
s, y

1 and y2 are, respectively:

(D16) �ps +

✓
y1

✓1

◆ 1
� p1q
(e1s)

2 + �2ps � �2

✓
y1

✓̄

◆ 1
� p2q
(e1s)

2 = 0,

(D17)

✓
y2

✓2

◆ 1
� p2q
(e2s)

2 = ps,

(D18) 1�
�
y1
� 1��

�
p1q
e1s

1

(✓1)
1
�

1

�
� �2 + �2

�
y1
� 1��

�
p2q
e1s

1
�
✓̄
� 1

�

1

�
= 0,

(D19)
�2

�1
� �2�

2

�1
� �2

�
y2
� 1��

�
p2q
e2s

1

(✓2)
1
�

1

�
= 0.

Rewrite (D19) as

(D20)
�
y2
� 1��

�
p2q
e2s

1

(✓2)
1
�

1

�
= 1.

Dividing (D17) by (D20) gives

(D21) y2 =
pse2s
�

,

from which, substituting in (D17), we obtain

(D22) e2s =
(✓2�)

1
1�2�

(ps)
1��
1�2�

�
p2q
� �

1�2�

,
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and therefore

(D23) y2 =
pse2s
�

=
ps
�

(✓2�)
1

1�2�

(ps)
1��
1�2�

�
p2q
� �

1�2�

= ✓2

2

4 ✓2�
�
psp2q

� 1
2

3

5

2�
1�2�

.

Now rewrite (D16) and (D18) as:

(D24)

2

4 p1q

(✓1)
1
�

�
�2p2q
�
✓̄
� 1

�

3

5�y1
� 1

� = ps
�
e1s
�2 � �2ps

�
e1s
�2

,

(D25)

2

4 p1q

(✓1)
1
�

�
�2p2q
�
✓̄
� 1

�

3

5�y1
� 1��

� = �e1s � �2�e1s.

Dividing (D24) by (D25) gives

(D26) y1 =
pse1s
�

.

Substituting in (D24) the value for y1 provided by (D26) gives

2

4 p1q

(✓1)
1
�

�
�2p2q
�
✓̄
� 1

�

3

5
✓
pse1s
�

◆ 1
�

= �1ps
�
e1s
�2

,

and therefore

�
e1s
� 1�2�

� =
�1 (�)

1
� (ps)

��1
�

p1q
�

1
✓1

� 1
� � �2p2q

�
1
✓̄

� 1
�

=
(�)

1
� (ps)

��1
�

p1q
�

1
✓1

� 1
� + �2

1��2

h
p1q
�

1
✓1

� 1
� � p2q

�
1
✓̄

� 1
�

i ,

i.e.

(D27) e1s =
(�1)

�
1�2� (�)

1
1�2� (ps)

��1
1�2�

h
p1q
�

1
✓1

� 1
� � �2p2q

�
1
✓̄

� 1
�

i �
1�2�

=
(✓1�)

1
1�2�

(ps)
1��
1�2�

�
p1q
� �

1�2�

h
1
�1 � �2

�1

p2q
p1q

�
✓1

✓̄

� 1
�

i �
1�2�

,
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and therefore

y1 =
pse1s
�

=
(�1)

�
1�2� (�)

2�
1�2�

"
p1q

(✓1)
1
�
� �2p2q

(✓̄)
1
�

# �
1�2�

1

(ps)
�

1�2�

=
(�)

2�
1�2�

"
p1q

(✓1)
1
�
� �2p2q

(✓̄)
1
�

# �
1�2�

✓
�1

ps

◆ �
1�2�

=
(✓1)

1
1�2� (�)

2�
1�2�

(
psp1q +

�2

1��2ps (✓1)
1
�

"
p1q

(✓1)
1
�
� p2q

(✓̄)
1
�

#) �
1�2�

.(D28)

Combining (D22) and (D27) gives

e1s
e2s

=

(�1)
�

1�2� (�)
1

1�2� (ps)
��1
1�2�

2

4 p1q

(✓1)
1
�
� �2p2q

(✓̄)
1
�

3

5

�
1�2�

(✓2�)
1

1�2�

(ps)
1��
1�2� (p2q)

�
1�2�

=
(�1)

�
1�2� (�)

1
1�2� (ps)

��1
1�2�

"
p1q

(✓1)
1
�
� �2p2q

(✓̄)
1
�

# �
1�2�

(ps)
1��
1�2�

�
p2q
� �

1�2�

(✓2�)
1

1�2�

=

2

64
�1p2q

p1q
�
✓2

✓1

� 1
� � �2p2q

⇣
✓2

✓

⌘ 1
�

3

75

�
1�2�

.(D29)

Consider now the di↵erence y1 � pse1s � p1qe
1
q. Notice that, by using (D24), we can write

p1qe
1
q =

✓
y1

✓1

◆ 1
� p1q
e1s

= pse
1
s �

"
ps �

✓
y1

✓̄

◆ 1
� p2q
(e1s)

2

#
�2e1s

= �1pse
1
s + �2

✓
y1

✓̄

◆ 1
� p2q
e1s
.(D30)

Therefore, using (D26) and (D30), we can express y1 � pse1s � p1qe
1
q as

y1 � pse
1
s � p1qe

1
q =

pse1s
�

� pse
1
s � �1pse

1
s � �2

✓
y1

✓̄

◆ 1
� p2q
e1s

=
1� � � �1�

�
pse

1
s � �2p2q

✓
y1

✓̄

◆ 1
� 1

e1s

=
1� 2�

�
pse

1
s + �2

"
pse

1
s � p2q

✓
y1

✓̄

◆ 1
� 1

e1s

#

=
1� 2�

�
pse

1
s + �2

"
pse

1
s � p2q

✓
ps
�✓̄

◆ 1
� �

e1s
� 1��

�

#
.(D31)

Given that the downward IC-constraint (D15) must be binding at the separating tax
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equilibrium (this follows from our assumption that the social welfare function is of the

max-min type), we have that

c2

�1
= y1 � pse

1
s �

✓
y1

✓

◆ 1
� p2q
e1s

+
�2

�1
y2 + pse

2
s +

✓
y2

✓2

◆ 1
� p2q
e2s

=
pse1s
�

� pse
1
s +

�2

�1

pse2s
�

+ pse
2
s + p2q

"✓
pse2s
�✓2

◆ 1
� 1

e2s
�
✓
pse1s
�✓

◆ 1
� 1

e1s

#

=
pse1s
�

� pse
1
s +

�2

�1

pse2s
�

+ pse
2
s + p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#

=
1� �

�
pse

1
s +

�2

�1

pse2s
�

+ pse
2
s + p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#
,

and therefore

c2 =
1� �

�
�1pse

1
s + �2pse

2
s

�
+ �1pse

2
s + �1p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#

=
⇥
(1� �) �1e1s + �2e2s + �1�e2s

⇤ ps
�

+ �1p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#

=
�
�1e1s + �2e2s

� ps
�

+
�
e2s � e1s

�
�1ps + �1p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#
.

It then follows that the transfer provided to each type-1 agent, �2

�1 (y2 � c2), is given by

�2

�1

�
y2 � c2

�

=
�2

�1

pse2s
�

� �2

�1

�
�1e1s + �2e2s

� ps
�

� �2

�1

�
e2s � e1s

�
�1ps

��2

�1
�1p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#

= ��2
�
e1s � e2s

� ps
�

�
�
e2s � e1s

�
�2ps

��2p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#

=
1� �

�

�
e2s � e1s

�
�2ps

��2p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#
.(D32)

We have now all the ingredients to determine the value of the government’s objective

function, i.e. the utility of type-1 agents, under a separating tax equilibrium. Using
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(D31) and (D32), the government’s objective function is given by

U sep =
�2

�1

�
y2 � c2

�
+ y1 � pse

1
s � p1qe

1
q

=
1� �

�

�
e2s � e1s

�
�2ps � �2p2q

✓
ps
�

◆ 1
�

"✓
1

✓2

◆ 1
� �

e2s
� 1��

� �
✓
1

✓

◆ 1
� �

e1s
� 1��

�

#

+
1� 2�

�
pse

1
s + �2

"
pse

1
s � p2q

✓
ps
�✓̄

◆1/� �
e1s
� 1��

�

#

=
1� �

�

�
e2s � e1s

�
�2ps +

1� 2�

�
pse

1
s + �2pse

1
s � �2p2q

✓
ps
�✓2

◆ 1
� �

e2s
� 1��

�

=
1

�

⇥
�2e2s � �2e1s � �2�e2s + �2�e1s + ��2e1s + e1s � 2�e1s

⇤
ps � �2p2q

✓
ps
�✓2

◆ 1
� �

e2s
� 1��

�

=
1

�

⇥
(1� �) �2e2s + (1� 2�) �1e1s

⇤
ps � �2p2q

✓
ps
�✓2

◆ 1
� �

e2s
� 1��

� .

Given that from (D22) we have

�
e2s
� 1��

� =
(✓2�)

1
1�2�

1��
�

(ps)
1��
1�2�

1��
�
�
p2q
� 1��

1�2�

,

it follows that

�2p2q

✓
ps
�✓2

◆ 1
� �

e2s
� 1��

� = �2p2q

✓
ps
�✓2

◆ 1
� (✓2�)

1
1�2�

1��
�

(ps)
1��
1�2�

1��
�
�
p2q
� 1��

1�2�

= �2
�
psp

2
q

� �
2��1

�
�✓2
� 1

1�2� .

Therefore, we can rewrite U sep as

U sep =
1

�

⇥
(1� �) �2e2s + (1� 2�) �1e1s

⇤
ps � �2

�
psp

2
q

� �
2��1

�
�✓2
� 1

1�2� ,

i.e., exploiting (D22),

U sep =
1

�

⇥
(1� �) �2e2s + (1� 2�) �1e1s

⇤
ps � �2pse

2
s =

1� 2�

�

�
�1e1s + �2e2s

�
ps,(D33)

or, equivalently, since y1 = pse1s
� and y2 = pse2s

� ,

(D34) U sep = (1� 2�)
�
�1y1 + �2y2

�
,

where y1 is provided by (D28) and y2 is provided by (D23).

The above analysis was performed under the assumption that the upward IC-constraint

could be neglected. We can now proceed to verify under which condition this assumption
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is justified. The upward IC-constraint is satisfied if the following condition holds:

(D35) c1 � pse
1
s � p1q

�
y1
� 1

�
1

(✓1)
1
�

1

e1s
� c2 � pse

2
s � p1q

�
y2
� 1

�
1

(✓2)
1
�

1

e2s
,

or equivalently, exploiting the fact that we know the downward IC-constraint is necessarily

binding,
�
p1q � p2q

�
e2q � p1qe

1
q � p2qbe2q,

where the RHS of the inequality represents the di↵erence between the utility of a type-

1 as a non-mimicker and the utility of a type-2 behaving as a mimicker, and the LHS

represents the di↵erence between the utility of a type-2 as a non-mimicker and the utility

of a type-1 as a mimicker.

According to the binding version of the downward IC-constraint, we have that

c2 � pse
2
s � p2q

�
y2
� 1

�
1

(✓2)
1
�

1

e2s
= c1 � pse

1
s � p2q

�
y1
� 1

�
1
�
✓
� 1

�

1

e1s
,

i.e.,

c2 � pse
2
s � p1q

�
y2
� 1

�
1

(✓2)
1
�

1

e2s
= c1 � pse

1
s � p2q

�
y1
� 1

�
1
�
✓
� 1

�

1

e1s
�
�
p1q � p2q

� �
y2
� 1

�
1

(✓2)
1
�

1

e2s
.

(D36)

Replace in the RHS of (D35) the RHS of (D36). We get:

c1 � pse
1
s � p1q

�
y1
� 1

�
1

(✓1)
1
�

1

e1s
� c1 � pse

1
s � p2q

�
y1
� 1

�
1
�
✓
� 1

�

1

e1s
�
�
p1q � p2q

� �
y2
� 1

�
1

(✓2)
1
�

1

e2s
,

i.e.,

�p1q
�
y1
� 1

�
1

(✓1)
1
�

1

e1s
� �p2q

�
y1
� 1

�
1
�
✓
� 1

�

1

e1s
�
�
p1q � p2q

� �
y2
� 1

�
1

(✓2)
1
�

1

e2s
,

i.e.,

(D37)

2

4 p1q

(✓1)
1
�

�
p2q
�
✓
� 1

�

3

5 (y1)
1
�

e1s


p1q � p2q

(✓2)
1
�

(y2)
1
�

e2s
.

The LHS of (D37) captures the information rent that has to be paid to type-2 agents to

deter them from mimicking. The RHS captures the di↵erence between the utility of a type-

2 agent and that of a type-1 agent behaving as a mimicker. Intuitively, one can safely

disregard the upward IC-constraint if enough redistribution can be performed towards

type-1 agents, i.e. if the information rent that accrues to type-2 agents is su�ciently

small.
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Noticing that (from (D21) and (D26))

(y1)
1
�

e1s
=

(ps)
1
� (e1s)

1
�

�
1
�

1

e1s
=

(ps)
1
� (e1s)

1��
�

�
1
�

=
ps (y1)

1��
�

�
,

(y2)
1
�

e2s
=

(ps)
1
� (e2s)

1
�

�
1
�

1

e2s
=

(ps)
1
� (e2s)

1��
�

�
1
�

=
ps (y2)

1��
�

�
,

it follows that
(y1)

1
�

e1s

(y2)
1
�

e2s

=
(y1)

1��
�

(y2)
1��
�

,

and therefore, since

(y1)
1
�

e1s
=

(ps)
1
� (e1s)

1��
�

�
1
�

,

(y2)
1
�

e2s
=

(ps)
1
� (e2s)

1��
�

�
1
�

,

we can rewrite condition (D37) as

(D38)

2

4 p1q

(✓1)
1
�

�
p2q
�
✓
� 1

�

3

5�e1s
� 1��

� 
p1q � p2q

(✓2)
1
�

�
e2s
� 1��

� .

Finally, exploiting (D29) we can rewrite (D38) as

(D39)
p1q � p2q

(✓2)
1
�

�

2

64
�1p2q

p1q
�
✓2

✓1

� 1
� � �2p2q

⇣
✓2

✓

⌘ 1
�

3

75

1��
1�2� 2

4 p1q

(✓1)
1
�

�
p2q
�
✓
� 1

�

3

5 .

D.2.3 Separating tax equilibrium when both IC-constraints are binding

Suppose now that (D39) is violated so that both IC-constraints are binding at a separating

tax equilibrium. In this case the government maximizes

max
y2,y1,c2,e1s,e

2
s

�2

�1

�
y2 � c2

�
+ y1 � pse

1
s � p1q

✓
y1

✓1

◆ 1
� 1

e1s

subject to the binding version of the downward IC-constraint (D15)

(D40) c2 � �2

�1

�
y2 � c2

�
� y1 � pse

2
s � p2q

✓
y2

✓2

◆ 1
� 1

e2s
+ pse

1
s + p2q

✓
y1

✓̄

◆ 1
� 1

e1s
= 0
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and the upward IC-constraint

(D41)
p1q � p2q

(✓2)
1
�

(y2)
1
�

e2s
=

2

4 p1q

(✓1)
1
�

�
p2q
�
✓
� 1

�

3

5 (y1)
1
�

e1s
.

Rewriting (D40) we have that

(D42) ��2�
2

�1
y2 � �2y1 � �2pse

2
s � �2p2q

✓
y2

✓2

◆ 1
� 1

e2s
+ �2pse

1
s + �2p2q

✓
y1

✓̄

◆ 1
� 1

e1s
= ��2

�1
c2

Therefore, we can restate the government’s problem by eliminating c2 from the objective

function (exploiting (D42)) and write

max
y2,y1,e1s,e

2
s

�2

�1
y2 + y1 � pse

1
s � p1q

✓
y1

✓1

◆ 1
� 1

e1s
� �2�

2

�1
y2 � �2y1 � �2pse

2
s

��2p2q

✓
y2

✓2

◆ 1
� 1

e2s
+ �2pse

1
s + �2p2q

✓
y1

✓̄

◆ 1
� 1

e1s

subject to the upward IC-constraint (D41).

Collecting terms in the objective function we can reformulate the government’s prob-

lem as

max
y2,y1,e1s,e

2
s

�2y2 + �1y1 � �1pse
1
s � �2pse

2
s � p1q

✓
y1

✓1

◆ 1
� 1

e1s
� �2p2q

✓
y2

✓2

◆ 1
� 1

e2s
+ �2p2q

✓
y1

✓̄

◆ 1
� 1

e1s

subject to upward IC constraint (D41).

Finally, noticing that the constraint (D41) can be equivalently restated as

(D43)
1

e2s
=

(✓2)
1
� (y1)

1
�

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i

�
p1q � p2q

�
(y2)

1
� (✓1)

1
�
�
✓
� 1

� e1s

,

we can exploit (D43) to eliminate e2s from the variables entering the objective function.

The government’s problem can then be restated as

max
y2,y1,e1s

�2y2 + �1y1 � �1pse
1
s � �2ps

p1q � p2q

(✓2)
1
�

(y2)
1
�

(y1)
1
�

�
✓1✓
� 1

�

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

e1s

�p1q

✓
y1

✓1

◆ 1
� 1

e1s
� �2p2q

✓
y2

✓2

◆ 1
� (y1✓2)

1
�

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i

�
p1q � p2q

� �
y2✓1✓

� 1
� e1s

+ �2p2q

✓
y1

✓̄

◆ 1
� 1

e1s
,
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or equivalently,

max
y2,y1,e1s

�2y2 + �1y1 � �1pse
1
s � �2p

1
q � p2q

(✓2)
1
�

�
✓1✓
� 1

�

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

(y2)
1
�

(y1)
1
�

pse
1
s

+

2

4 �2p1qp
2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

� p1q

3

5 (y1)
1
�

(✓1)
1
� e1s

.

The first order condition with respect to y2, y1 and e1s are respectively given by:

(D44)
�
y1
� 1

� =
1

�

p1q � p2q

(✓2)
1
�

�
✓1✓
� 1

�

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

�
y2
� 1��

� pse
1
s,

(D45)

�1+
1

�
�2p

1
q � p2q

(✓2)
1
�

�
✓1✓
� 1

�

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

(y2)
1
�

(y1)
1+�
�

pse
1
s+

1

�

2

4 �2p1qp
2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

� p1q

3

5 (y1)
1��
�

(✓1)
1
� e1s

= 0,

(D46)

��1ps � �2p
1
q � p2q

(✓2)
1
�

�
✓1✓
� 1

�

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

(y2)
1
�

(y1)
1
�

ps =

2

4 �2p1qp
2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

� p1q

3

5 (y1)
1
�

(✓1)
1
� (e1s)

2
.

We can rewrite (D45)-(D46), respectively, as

8
<

:

2

4 �2p1qp
2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

� p1q

3

5 1

(✓1)
1
�

+
p1q � p2q

(✓2)
1
�

�
✓1✓
� 1

� (e1s)
2 �2ps

�
✓
� 1

� p1q � (✓1)
1
� p2q

(y2)
1
�

(y1)
2
�

9
=

;
(y1)

1��
�

e1s
= ���1,

(D47)8
<

:

2

4 �2p1qp
2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

� p1q

3

5 1

(✓1)
1
�

+
p1q � p2q

(✓2)
1
�

�
✓1✓
� 1

� (e1s)
2 �2ps

�
✓
� 1

� p1q � (✓1)
1
� p2q

(y2)
1
�

(y1)
2
�

9
=

;
(y1)

1
�

(e1s)
2 = �ps�

1.

(D48)

from which one obtains that

(D49) y1 =
pse1s
�

.

Using (D49), from the first order condition (D44) we get

✓
pse1s
�

◆ 1
�

=
1

�

p1q � p2q

(✓2)
1
�

�
✓1✓
� 1

�

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

�
y2
� 1��

� pse
1
s,

71



and therefore

(D50) y2 =
pse1s
�

(✓2)
1

1��

�
p1q � p2q

� �
1��

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i �
1��

�
✓1✓
� 1

1��

,

from which we also obtain that

y2

y1
=

(✓2)
1

1��

�
p1q � p2q

� �
1��

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i �
1��

�
✓1✓
� 1

1��

,

and therefore

(D51)

✓
y2

y1

◆ 1
�

=
(✓2)

1
1��

1
�

�
p1q � p2q

� 1
1��

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i 1
1��

�
✓1✓
� 1

1��
1
�

Using (D51) to substitute for
(y2)

1
�

(y1)
1
�

on the LHS of (D46) gives

��1ps � �2p
1
q � p2q

(✓2)
1
�

�
✓1✓
� 1

�

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

(✓2)
1

1��
1
�

�
p1q � p2q

� 1
1��

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i 1
1��

�
✓1✓
� 1

1��
1
�

ps

=

2

4 �2p1qp
2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

� p1q

3

5 (y1)
1
�

(✓1)
1
� (e1s)

2
,

i.e.,

�1ps + �2ps
(✓2)

1
1��

�
✓1✓
� 1

1��

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i �
1��

�
p1q � p2q

� �
1��

=

2

4p1q �
�2p1qp

2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

3

5 (y1)
1
�

(✓1)
1
� (e1s)

2
,

i.e. (exploiting the fact that y1 = pse1s
� ),

�1+�2

✓
✓2

✓1✓

◆ 1
1��

2

4p
1
q

�
✓
� 1

� � p2q (✓
1)

1
�

p1q � p2q

3

5

�
1��

=

2

4p1q �
�2p1qp

2
q

p1q � p2q

(✓1)
1
� �

�
✓
� 1

�

�
✓
� 1

�

3

5 (e1s)
1�2�

� (ps)
1��
�

(�✓1)
1
�

,
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i.e.,

�1 + �2

✓
✓2

✓1✓

◆ 1
1��

2

4p
1
q

�
✓
� 1

� � p2q (✓
1)

1
�

p1q � p2q

3

5

�
1��

=

8
><

>:

p1q
�
✓
� 1

� � p2q (✓
1)

1
�

p1q � p2q
+

�1p2q

h
(✓1)

1
� �

�
✓
� 1

�

i

p1q � p2q

9
>=

>;
p1q
(ps)

1��
�

(�)
1
�

(e1s)
1�2�

�

�
✓✓1
� 1

�

,

from which one obtains that

e1s =

�
�✓✓1

� 1
1�2�

8
<

:�1 + �2
⇣

✓2

✓1✓

⌘ 1
1��

"
p1q(✓)

1
� �p2q(✓1)

1
�

p1q�p2q

# �
1��

9
=

;

�
1�2�

(ps)
1��
1�2�

�
p1q
� �

1�2�

8
<

:
�1p2q


(✓1)

1
� �(✓)

1
�

�

p1q�p2q
+

p1q(✓)
1
� �p2q(✓

1)
1
�

p1q�p2q

9
=

;

�
1�2�

,

or equivalently

e1s =

8
>><

>>:

�1
�
p1q � p2q

� �
1��
�
✓1✓
� 1

1�� + �2 (✓2)
1

1��

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i �
1��

�1
�
p1q � p2q

� �
✓
� 1

� + �2
h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i

9
>>=

>>;

�
1�2�

⇥
(�)

1
1�2�

�
✓1✓
� 1

1��
�
p1q � p2q

� �
1��

(ps)
1��
1�2�

�
p1q
� �

1�2�

.(D52)

Having found an expression for e1s, we have that

y1 =
pse1s
�

= �
2�

1�2�

�
✓✓1
� 1

1�2�
�
p1q � p2q

� �
1��

�
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� �
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⇥

8
>><
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�
p1q � p2q
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⇣
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⌘ 1
1��
h
p1q
�
✓
� 1

� � p2q (✓
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1
�

i �
1��

�1p2q

h
(✓1)

1
� �

�
✓
� 1

�

i
+ p1q

�
✓
� 1

� � p2q (✓
1)

1
�

9
>>=

>>;

�
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,
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or equivalently,

y1 =

8
>><

>>:

�1
�
p1q � p2q

� �
1��
�
✓1✓
� 1

1�� + �2 (✓2)
1
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h
p1q
�
✓
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1
�

i �
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� �
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⇥
�
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�
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�
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�
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,(D53)

and using (D50) we get that

y2 = �
2�
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�
✓✓1
� 1
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�
psp1q

� �
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8
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� �
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⇣
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h
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�
✓
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�
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h
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� �
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,

or equivalently,

y2 =

8
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.(D54)

Having found expressions for y1, y2 and e1s, we can use (D43) to get the following expression

for e2s:

e2s =
p1q � p2q
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i.e.,
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(D55)

From (D54) and (D55) we also see that

(D56) y2 =
pse2s
�

.

We can now calculate the value of the government’s objective function

U sep = �2y2 + �1y1 � �1pse
1
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which can also be rewritten (using (D49) and (D56)) as
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Let’s now compute ��2p2q
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The government’s objective function (D57) can then be re-expressed as

U sep =

✓
1� �

�

◆�
�2e2s + �1e1s

�
ps

+

2

4 �2p2q
�
✓
� 1

�

�
p1q

(✓1)
1
�

3

5 (�)
1

1�2�
�
✓1✓
� 1

�
�
p1q � p2q

�

(ps)
�

1�2�
�
p1q
� 1��

1�2�

⇥

8
>><

>>:

�1
�
p1q � p2q

� �
1��
�
✓1✓
� 1

1�� + �2 (✓2)
1

1��

h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i �
1��

�1
�
p1q � p2q

� �
✓
� 1

� + �2
h
p1q
�
✓
� 1

� � p2q (✓
1)

1
�

i

9
>>=

>>;

1��
1�2�

��2p2q

h
p1q
�
✓
� 1

� � p2q
�
✓1
� 1

�

i (�)
1

1�2�

(ps)
�

1�2�
�
p1q
� 1��

1�2�

⇥

8
>><

>>:

�1
�
p1q � p2q

� �
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h
p1q
�
✓
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� � p2q (✓
1)
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i �
1��

�1
�
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✓
� 1

� + �2
h
p1q
�
✓
� 1

� � p2q (✓
1)

1
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>>=

>>;
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i.e.,

U sep =

✓
1� �

�

◆�
�2e2s + �1e1s

�
ps

+
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4 �2p2q
�
✓
� 1

�

�
p1q

(✓1)
1
�

3

5�✓1✓
� 1
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p1q � p2q

�
� �2p2q

h
p1q
�
✓
� 1
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⇥
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�
p1q � p2q

� �
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�
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1
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h
p1q
�
✓
� 1
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1
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i �
1��
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�
p1q � p2q
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>>=

>>;
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Since we have that

2

4 �2p2q
�
✓
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�

�
p1q

(✓1)
1
�

3

5�✓1✓
� 1

�
�
p1q � p2q

�
� �2p2q

h
p1q
�
✓
� 1

� � p2q
�
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�
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= �2p2q

✓
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✓1✓
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� p1q

✓
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✓1
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✓1✓
� 1

�
�
p1q � p2q

�
� �2p2qp

1
q

�
✓
� 1

� + �2p2qp
2
q

�
✓1
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�

= �2p2q
�
✓1
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�
p1q � p2q

�
� p1q

�
✓
� 1

�
�
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�
� �2p2qp
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q
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✓
� 1

� + �2p2qp
2
q

�
✓1
� 1

�
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h
�2p2q
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� � p1q
�
✓
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� + �1p2q
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�

i
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� �
✓
� 1

� + �2
h
p1q
�
✓
� 1

� � p2q
�
✓1
� 1

�
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p1q,

the government’s objective function can be re-expressed as

U sep =

✓
1� �

�

◆�
�2e2s + �1e1s

�
ps

�
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�1
�
p1q � p2q
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✓
� 1
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✓1✓
� 1

1�� + �2 (✓2)
1
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h
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�
✓
� 1

� � p2q (✓
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1
�

i �
1��

�1
�
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� 1
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p1q
�
✓
� 1

� � p2q (✓
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1
�
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i.e.,

U sep =
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�
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�
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or equivalently,
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Noticing that
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we have that
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Thus, the government’s objective function can be re-expressed as
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1�2�
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⌘
(�2e2s + �1e1s) ps.

Substituting the optimal values for e1s and e2s gives
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(D58)

Finally, notice that (D49) and (D56) allow restating U sep as

(D59) U sep = (1� 2�)
�
�2y2 + �1y1

�
.
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D.3 The regions used to generate Figure 1

From (D11), (D12), (D34) and (D59), we have that a pooling tax equilibrium dominates

a separating tax equilibrium if and only if

(D60)

�
✓̄
� 1

1�2� �
2�

1�2�

�
psp1q

� �
1�2�

> �1y1 + �2y2.

Under a separating tax equilibrium the upward IC-constraint can be safely disregarded

when (D39) holds. In this case, the values of y1 and y2 are given by (D28) and (D23).

When instead condition (D39) is violated, both IC-constraints will be binding at a

separating tax equilibrium; in this case the values of y1 and y2 are given by (D53) and

(D54).

For given values of p1q and ✓2, let the ability advantage of type-2 agents be denoted by

✏ = ✓2 � ✓1 > 0 and the cost disadvantage of type-1 agents denoted by � = p1q � p2q > 0.

Moreover, define the function f (�, "), for (�, ") 2
⇥
0, p1q

⇤
⇥ [0, ✓2], as

(D61)

f (�, ") ⌘ �
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1
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3
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.

Our results imply that:

i) For (�, ")-pairs such that f (�, ") � 0, predistribution is desirable if and only if

(D62)

"
(✓2 � �1")

1
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p1q

# �
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.

ii) For (�, ")-pairs such that f (�, ") < 0, predistribution is desirable if and only if
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E Proof of Proposition 3

Part (a) The government’s problem under pooling can be equivalently stated as

max
es,eq

✓h (es, eq)� pses � p1qeq,(E1)

Denoting by a hat symbol the optimal values of es and eq, and using subscripts on h to

denote partial derivatives, the associated first order conditions are

1� ps
✓h1 (bes, beq)

= 0,(E2)

1�
p1q

✓h2 (bes, beq)
= 0,(E3)

from which it also follows that

ps
p1q

=
h1 (bes, beq)
h2 (bes, beq)

<
ps
p2q
.(E4)

Part (b) From the relationship ✓h (es, eq) = y, one can derive a function, denoted by f ,

that expresses eq as a function of y, es and ✓: eq = f (y, es, ✓). Relying on such a function,

define R1 (y1, e1s), R
2 (y2, e2s), bR2 (y1, e1s) and R̃1(y2, e2s) as follows:

R1
�
y1, e1s

�
⌘ pse

1
s + p1qf

�
y1, e1s, ✓

1
�
,(E5)

R2
�
y2, e2s

�
⌘ pse

2
s + p2qf

�
y2, e2s, ✓

2
�
,(E6)

bR2
�
y1, e1s

�
⌘ pse

1
s + p2qf

�
y1, e1s, ✓

�
,(E7)

R̃1(y2, e2s) ⌘ pse
2
s + p1qf

�
y2, e2s, ✓

2
�
.(E8)

Based on (E5)-(E8) we can then equivalently reformulate the government’s optimal tax

problem as

max
y1,e1s,c

1,y2,e2s,c
2
c1 �R1

�
y1, e1s

�
(E9)

subject to

c2 �R2
�
y2, e2s

�
� c1 � bR2

�
y1, e1s

�
(E10)

c1 �R1
�
y1, e1s

�
� c2 � R̃1(y2, e2s)(E11)

�1
�
y1 � c1

�
+ �2

�
y2 � c2

�
� 0.(E12)
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Denote by �2, �1 and µ the Lagrange multipliers of the government’s problem. The first

order conditions with respect to, respectively y1, e1s, c
1, y2, e2s, c

2, are

�@R1 (y1, e1s)

@y1
+ �2@ bR2 (y1, e1s)

@y1
� �1@R

1 (y1, e1s)

@y1
+ µ�1 = 0,(E13)

�@R1 (y1, e1s)

@e1s
+ �2@ bR2 (y1, e1s)

@e1s
� �1@R

1 (y1, e1s)

@e1s
= 0,(E14)

1� �2 + �1 � µ�1 = 0,(E15)

��2@R
2 (y2, e2s)

@y2
+ �1@R̃

1 (y2, e2s)

@y2
+ µ�2 = 0,(E16)

��2@R
2 (y2, e2s)

@e2s
+ �1@R̃

1 (y2, e2s)

@e2s
= 0,(E17)

�2 � �1 � µ�2 = 0.(E18)

From (E15) and (E18) we get that µ = 1 and �2 � �1 = 1 � �1 = �2. Taking this into

account, from (E17)-(E18) we get

�@R2 (y2, e2s)

@e2s
=

�1

�2

 
@R2 (y2, e2s)

@e2s
� @R̃1 (y2, e2s)

@e2s

!

=
�1

�2

✓
ps �

h1 (e2s, f (y2, e2s, ✓
2))

h2 (e2s, f (y2, e2s, ✓
2))

p2q

◆
�
✓
ps �

h1 (e2s, f (y2, e2s, ✓
2))

h2 (e2s, f (y2, e2s, ✓
2))

p1q

◆�

=
�1

�2

�
p1q � p2q

� h1 (e2s, f (y2, e2s, ✓
2))

h2 (e2s, f (y2, e2s, ✓
2))

.(E19)

Noticing that
@R2(y2,e2s)

@e2s
= ps�p2q

h1(e2s,f(y2,e2s,✓2))
h2(e2s,f(y

2,e2s,✓
2)) , eq. (E19) implies eq. (33). We therefore

have that

(E20)
h1 (e2s, f (y2, e2s, ✓

2))

h2 (e2s, f (y2, e2s, ✓
2))

=
h1

�
e2s, e

2
q

�

h2

�
e2s, e

2
q

� � ps
p2q
.

Combining (E16) and (E18) gives

(E21) 1� @R2 (y2, e2s)

@y2
=

�1

�2

�
p2q � p1q

�✓de2q
dy2

◆

de2s=0

=
�1

�2

p2q � p1q
✓2h2 (e2s, f (y2, e2s, ✓

2))
 0.

Noticing that
@R2(y2,e2s)

@y2 =
p2q

✓2h2(e2s,f(y
2,e2s,✓

2)) , eq. (E21) implies eq. (34). The result stated

by eq. (35) can then be easily obtained combining the results provided by (E19) and

(E21).

From (E14)-(E15) we have that

(E22) �@R1 (y1, e1s)

@e1s

�
�2 + �1

�
= ��2@ bR2 (y1, e1s)

@e1s
,
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or equivalently

(E23) �@R1 (y1, e1s)

@e1s
=

�2

�1

 
@R1 (y1, e1s)

@e1s
� @ bR2 (y1, e1s)

@e1s

!
.

Noticing that
@R1(y1,e1s)

@e1s
= ps � p1q

h1(e1s,f(y1,e1s,✓1))
h2(e1s,f(y

1,e1s,✓
1)) , eq. (E23) can be restated as

� ps + p1q
h1 (e1s, f (y1, e1s, ✓

1))

h2 (e1s, f (y1, e1s, ✓
1))

(E24)

=
�2

�1

"✓
ps �

h1 (e1s, f (y1, e1s, ✓
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h2 (e1s, f (y1, e1s, ✓
1))

p1q

◆
�
 
ps �

h1

�
e1s, f

�
y1, e1s, ✓

��

h2

�
e1s, f

�
y1, e1s, ✓

��p2q

!#
(E25)

=
�2

�1

"
h1

�
e1s, f

�
y1, e1s, ✓

��

h2

�
e1s, f

�
y1, e1s, ✓

��p2q �
h1 (e1s, f (y1, e1s, ✓

1))

h2 (e1s, f (y1, e1s, ✓
1))

p1q

#
,(E26)

from which eq. (30) is obtained. Notice that the right hand side of the equation above

has a negative sign given that p2q < p1q and f
�
y1, e1s, ✓

�
< f (y1, e1s, ✓

1) (which implies that
h1(e1s,f(y1,e1s,✓))
h2(e1s,f(y1,e1s,✓))

<
h1(e1s,f(y1,e1s,✓1))
h2(e1s,f(y

1,e1s,✓
1)) ). It therefore follows that

(E27)
h1 (e1s, f (y1, e1s, ✓

1))

h2 (e1s, f (y1, e1s, ✓
1))

=
h1

�
e1s, e

1
q

�

h2

�
e1s, e

1
q

� <
ps
p1q
.

From (E13) and (E15) we have that

(E28) �@R1 (y1, e1s)

@y1
�
�2 + �1

�
= ��2@ bR2 (y1, e1s)

@y1
� �1,

or equivalently

(E29) 1� @R1 (y1, e1s)

@y1
=

�2

�1

 
@R1 (y1, e1s)

@y1
� @ bR2 (y1, e1s)

@y1

!
.

Noticing that
@R1(y1,e1s)

@y1 =
p1q

✓1h2(e1s,f(y
1,e1s,✓

1)) , eq. (E29) can be restated as

1� @R1 (y1, e1s)

@y1
=

�2

�1

 
p1q

✓1h2 (e1s, f (y1, e1s, ✓
1))

�
p2q

✓h2

�
e1s, f

�
y1, e1s, ✓

��
!
,(E30)

from which eq. (31) is obtained. Notice that the right hand side of the equation above

has a positive sign given that p1q > p2q and f (y1, e1s, ✓
1) > f

�
y1, e1s, ✓

�
(which implies that

h2 (e1s, f (y1, e1s, ✓
1)) < h2

�
e1s, f

�
y1, e1s, ✓

��
). Finally, the result stated by eq. (32) can be

easily obtained combining the results provided by (30) and (31).
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F Proof of Proposition 4

Assume first that the nonlinear income tax is confiscatory at all levels of income other

than y1 and y2. The subsidy schedule for y = y2 is flat and has � (es) = 0 8es. Suppose

that, conditional on earning a gross income equal to y1, the subsidy on es is proportional

at rate �. Along the isoquant y1 = ✓1h (es, eq), type-1 agents will choose an e↵ort mix

that satisfies the condition MRTS1 = (1� �) ps/p1q. Thus, setting � = 1� h1(e1s,e1q)
h2(e1s,e1q)

p1q
ps

will

induce type-1 agents to adopt the constrained-e�cient e↵ort mix
�
e1s, e

1
q

�
. From (30) we

also have that

(F1) � =
�2

�1

✓
MRTS1 �MRTS21p

2
q

p1q

◆
p1q
ps

> 0.

Denote by �⇤ the subsidy rate provided by (F1). For later purposes, notice that type-

1 agents would still be induced to adopt the constrained-e�cient e↵ort mix
�
e1s, e

1
q

�
if

one were to replace the proportional subsidy with a piecewise-linear structure such that

� > �⇤ for es  e1s and � = �⇤ for es > e1s. The problem with a proportional subsidy set

at rate �⇤ is that it does not guarantee that, for a type-2 agent behaving as a mimicker

(and therefore earning a gross income equal to y1), choosing es = e1s is indeed optimal.

To consider the incentives of a type-2 agent earning y1 , consider first the case of a type-2

agent being remunerated according to the average productivity ✓. Along the isoquant

y1 = ✓h (es, eq), a type-2 mimicker would find it optimal to select es = e1s provided that

the subsidy on es is set at a rate such that

(F2)
h1

�
e1s, be2q

�

h2

�
e1s, be2q

� =
(1� �) ps

p2q
.

Denote by b� the subsidy that satisfies the condition (F2). Since p2q < p1q and be2q < e1q

(which implies that
h1(e1s,be2q)
h2(e1s,be2q)

<
h1(e1s,e1q)
h2(e1s,e1q)

), it follows that b� > �⇤.

b� = 1�
h1

�
e1s, be2q

�

h2

�
e1s, be2q

�
p2q
ps
.

Moreover, since

b� = 1�
h1

�
e1s, e

1
q

�

h2

�
e1s, e

1
q

�
p1q
ps

+ 1�
h1

�
e1s, be2q

�

h2

�
e1s, be2q

�
p2q
ps

� 1 +
h1

�
e1s, e

1
q

�

h2

�
e1s, e

1
q

�
p1q
ps

= 1�
h1

�
e1s, e

1
q

�

h2

�
e1s, e

1
q

�
p1q
ps

+
h1

�
e1s, e

1
q

�

h2

�
e1s, e

1
q

�
p1q
ps

�
h1

�
e1s, be2q

�

h2

�
e1s, be2q

�
p2q
ps
,
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exploiting (F1), we can also re-express b� as

b� =

✓
1 +

�2

�1

◆✓
MRTS1 �MRTS21p

2
q

p1q

◆
p1q
ps

> �⇤.

Thus, a piecewise-linear subsidy schedule such that � = b� for es  e1s and � = �⇤ for

es > e1s would ensure that es = e1s is the optimal choice both for a type-1 agent being

remunerated according to the productivity ✓1 and for a type-2 mimicker being remunerated

according to the average productivity ✓.

The last thing that one needs to check is whether the proposed piecewise-linear subsidy

schedule is su�cient to deter type-2 agents from earning y1 while being remunerated

according to their true productivity ✓2. Put di↵erently, one should check whether, under

the proposed piecewise-linear subsidy schedule, it is indeed the case that type-2 mimickers

have no incentive to choose a value es 6= e1s that allows them to achieve separation at an

income equal to y1. For this purpose, consider in the (es, eq)-plane the point
�
e1s, e

1
q

�
(on

the isoquant y1 = ✓1h (es, eq)) and the point
�
e1s, be2q

�
(on the isoquant y1 = ✓h (es, eq)), and

consider the two isocost lines (1� b�) pses + p1qeq = (1� b�) pse1s + p1qe
1
q and (1� b�) pses +

p2qeq = (1� b�) pse1s + p2qbe2q, the first pertaining to type-1 agents and passing through the

point
�
e1s, e

1
q

�
, and the second pertaining to type-2 agents and passing through the point

�
e1s, be2q

�
(with the first isocost line being flatter than the second due to the fact that

p1q > p2q). Type-2 mimickers will have no incentive to choose a value es 6= e1s that allows

them to achieve separation at y = y1 if and only if, on the isoquant y1 = ✓2h (es, eq),

there is no pair (es, eq) that is at the same time below the isocost line (1� b�) pses +
p2qeq = (1� b�) pse1s + p2qbe2q (meaning that it entails for type-2 agents an e↵ort cost that

is lower than the one they would sustain if mimicking by pooling, i.e. earning y1 while

being remunerated according to the average productivity ✓) and above the isocost line

(1� b�) pses + p1qeq = (1� b�) pse1s + p1qe
1
q (meaning that type-1 agents would be deterred

from replicating the e↵ort choices of type-2 agents). Denote by
�
eints , eintq

�
the point of

intersection of the two isocost lines. As the isocost line associated with type-2 agents is

steeper than the isocost line associated with their type-1 counterparts, two observations

follow. First, notice that eints < e1s and eintq > e1q. Further notice that an allocation, which

is both cost-saving for type-2 agents and above the isocost line associated with type-1

agents, necessarily lies to the left of the intersection point. Two cases, hence, must be

distinguished.

Case i) The point
�
eints , eintq

�
is to the left of the isoquant y1 = ✓2h (es, eq) (or at a point

on this isoquant), i.e. ✓2h
�
eints , eintq

�
 y1. In this case, type-2 mimickers find it unprof-

itable to separate themselves from their type-2 counterparts. They are (weakly) better o↵

earning y1 while being remunerated according to the average productivity ✓ than earning

y1 while being remunerated according to the true productivity ✓2. It then follows that

the two-bracket piecewise-linear subsidy schedule is enough for implementation purposes.
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Case ii) The point
�
eints , eintq

�
is to the right of the isoquant y1 = ✓2h (es, eq), i.e.

✓2h
�
eints , eintq

�
> y1. In this case the proposed two-bracket piecewise-linear subsidy sched-

ule is not enough for implementation purposes. The reason is that type-2 mimickers can

earn y1 while achieving separation (choosing es < eints and eq > eintq ) and sustaining a

cost (1� b�) pses + p2qeq which is strictly lower than (1� b�) pse1s + p2qbe2q. In particular,

the fact that the point
�
eints , eintq

�
is to the right of the isoquant y1 = ✓2h (es, eq) means

that along the isoquant y1 = ✓2h (es, eq) there is a non-empty set of points (es, eq) that

are at the same time below the isocost line (1� b�) pses + p2qeq = (1� b�) pse1s + p2qbe2q and

above the isocost line (1� b�) pses + p1qeq = (1� b�) pse1s + p1qe
1
q. To guard against the

possibility that type-2 mimickers find it preferable to earn y1 while achieving separation

(rather than pooling with type-1 agents at the e↵ort mix
�
e1s, be2q

�
), a third bracket should

be included in the subsidy schedule. In particular, let � = 100% for es  eints , � = b�
for eints < es  e1s and � = �⇤ for es > e1s. This change implies that lowering es below

eints does not entail any cost-saving for an agent; in particular, any combination (es, eq)

(on the isoquant y1 = ✓2h (es, eq)) such that es < eints and eq > eintq (needed to achieve

separation) is more costly for type-2 agents than p2qe
int
q , and therefore more costly than

(1� b�) (e1s � eints ) ps + p2qbe2q. This implies that for type-2 mimickers it is strictly better to

earn y1 while being remunerated according to the average productivity ✓ rather than by

achieving separation.

Under case i), type-1 agents receive a transfer equal to b�pse1s through the educa-

tion subsidy schedule. To satisfy the government’s budget constraint it must be that

T (y1) = y1 � c1 + b�pse1s. Under case ii), type-1 agents receive a transfer equal to

[eints + (e1s � eints ) b�] ps through the education subsidy schedule. To satisfy the govern-

ment’s budget constraint it must be that T (y1) = y1 � c1 + [eints + (e1s � eints ) b�] ps and

T (y2) = y2 � c2.

So far, in our discussion we have been assuming that the nonlinear income tax was

set at confiscatory levels for all levels of income other than y1 and y2. However, this

assumption can be safely replaced with the alternative assumption that T (y 6= y1) =

y2 � c2. The reason is that such a change does not a↵ect the incentives of type-2 agents.

We already know that, by construction, type-2 agents are weakly better o↵ earning y2

rather than earning y1. Now suppose that, for y 6= {y1, y2}, we replace the confiscatory

income tax with a lump-sum tax set at y2 � c2, and suppose that, after this change is

implemented, type-2 agents prefer to earn y 6= y2. Given that type-2 agents choose y and

es to maximize their utility subject to the constraint that type-1 agents have no incentive

to replicate their choices, it then follows that the government could have o↵ered to type-2

agents an allocation di↵erent than
�
y2, c2, e2s, e

2
q

�
that jointly satisfies the following three

conditions: i) it allows the government to keep unchanged the amount of taxes raised

from type-2 agents; ii) it allows type-2 agents to achieve a higher utility; iii) it does

not violate the constraint requiring type-1 agents not to be tempted to replicate the
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choices of type-2 agents. But if this had been possible, the new allocation would have

allowed the government to relax the downward IC constraint (23), which has to be binding

given our assumption of a max-min social objective, contradicting the assumption that
�
y2, c2, e2s, e

2
q

�
belongs to the MMO. Thus, setting T (y 6= y1) = y2 � c2 for y 6= {y1, y2}

implies that type-2 agents are better o↵ achieving separation by earning y2 and choosing

es = e2s. At the same time, it is also true that type-2 agents cannot achieve a higher

utility by pooling with type-1 agents, and being remunerated according to the average

productivity ✓, at some income level y 6= y1. In fact, suppose that this were indeed

possible for them. In order to pool with type-1 agents at y 6= y1, it must be the case

that type-1 agents are weakly better o↵ earning y, while being remunerated according

to the average productivity, than getting the bundle
�
y1, c1, e1s, e

1
q

�
intended for them.

However, this would contradict the assumption that the MMO was an STE. The reason

is that there would exist a pooling allocation, (y, y2 � c2, es, eq), such that the utility

of type-1 agents is not lower than at the presumed optimal bundle
�
y1, c1, e1s, e

1
q

�
, while

at the same time allowing the government to raise a higher net tax revenue (running a

budget surplus rather than a budget-balance).34 Notice that type-1 agents, clearly, have

no incentives to separate themselves from their type-2 counterparts by choosing a level

of income y 6= {y1, y2}, which is strictly dominated by pooling with type-2 agents at this

level of income.

Finally, notice that, for y = y1, the proposed subsidy-schedule follows a declining

scale (�0 (es)  0). However, all the incentives would be left una↵ected if one were to

replace this schedule with a simpler schedule featuring only two brackets: � (es) = 100%

for es  e1s and � (es) = 0 for es > e1s. This would imply extending over the entire interval

(0, e1s) the most generous subsidy rate. To maintain public budget balance, in this case

one should adjust the income tax function by properly raising T (y1); in particular one

should set T (y1) = y1� c1+ pse1s . This alternative subsidy schedule would be equivalent

to adopting a system with an income-dependent mandate. The only di↵erence is that

under a mandate the public expenditure for education is nil, since individuals pay the full

price but are required to get a minimum amount. This implied that, under an income-

dependent mandate, public budget balance is guaranteed by setting T (y1) = y1 � c1.

Furthermore, if it is the case that e1s  e2s at the MMO, an even simpler implementing

scheme would su�ce because in such a case there would be no need to let the mandate

be income-dependent.

34At the pooling allocation
�
y, y2 � c2, es, eq

�
, education subsidies are zero and everybody pays an

income tax y2 � c2 > 0.
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G Proof of Proposition 5

Consider the optimization problem solved by an agent of type-1 under a tax system featur-

ing a proportional tax/subsidy on income supplemented by a mandate on es prescribing

that es � bes:

(G1) max
e1s,e

1
q

(1� t) ✓1h
�
e1s, e

1
q

�
� pse

1
s � p1qe

1
q subject to e1s � bes.

The associated first order conditions would be

(1� t) ✓1h1

�
e1s, e

1
q

�
 ps,(G2)

(1� t) ✓1h2

�
e1s, e

1
q

�
= p1q.(G3)

Suppose that t =
⇣

1
✓
� 1

✓1

⌘
p1q

h2(bes,beq) < 0. The first order conditions (G2)-(G3) would

become

1 +

✓
1

✓1
� 1

✓

◆
p1q

h2 (bes, beq)
 ps

✓1h1

�
e1s, e

1
q

� ,(G4)

1 +

✓
1

✓1
� 1

✓

◆
p1q

h2 (bes, beq)
=

p1q
✓1h2

�
e1s, e

1
q

� .(G5)

Given that the MMO satisfies (E3), it follows that the e↵ort mix (bes, beq) satisfies the
first order condition (G5). Moreover, given that the MMO also satisfies (E4), it also

follows that the e↵ort mix (bes, beq) satisfies (as an equality) the first order condition (G4).

Exploiting the above result, let the mandate on es be set at bes, and assume that, for

y 2 [0, by], the income tax chosen by the government takes the following linear form:

(G6) T (y) =

✓
1

✓1
� 1

✓

◆
p1q

h2 (bes, beq)
by

| {z }
>0

+

✓
1

✓
� 1

✓1

◆
p1q

h2 (bes, beq)| {z }
<0

y.

Notice that the tax function (G6) features a constant marginal subsidy (T 0 =
⇣

1
✓
� 1

✓1

⌘
p1q

h2(bes,beq) <

0), a decreasing average tax rate, and also that, by construction, it satisfies the condi-

tion T (by) = 0. Assume initially that T (y) = 0 also for y > by (we will later revise

this assumption). It follows that (bes, beq) represents the e↵ort mix (es, eq) that maximizes

✓1h (es, eq)� T (✓1h (es, eq))� pses � p1qeq subject to the constraint es � bes.
Consider now the various options available to type-2 agents.

i) Suppose that they try to achieve separation from their low-skilled counterpart.

Under separation, type-1 agents get a utility equal to y1�T (y1)�psbes�p1qbeq. Notice also
that, given our assumptions about T (y), type-2 agents cannot achieve separation at a

level of income y 2 [y1, ✓2h2 (bes, beq)] (where one should notice that ✓2h2 (bes, beq) > by > y1)
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and would not find attractive to achieve separation at a level of income lower than y1.

To show this, notice first that, to verify whether or not it is possible or attractive for

type-2 agents to achieve separation at y2  ✓2h2 (bes, beq), it su�ces to check whether

separation is achievable or attractive when choosing e2s = bes. This is because type-2

agents have a comparative advantage in the eq-dimension, and the mandate on es prevents

them from choosing a value of es smaller than bes. Consider first what would happen

if type-2 agents try to achieve separation at an equilibrium where they earn by; they

would choose the e↵ort mix (bes, eq (by, bes, ✓2)). However, given that y1 = ✓1h (bes, beq) < by,
T (y1) > T (by) = 0 and eq (by, bes, ✓2) < beq, if type-2 agents were to choose the e↵ort mix

(bes, eq (by, bes, ✓2)) they would not succeed in achieving separation (because type-1 agents

would be strictly better o↵ by replicating the e↵ort mix of type-2 agents than by choosing

(bes, beq): y1 � T (y1) � psbes � p1qbeq < by � psbes � p1qeq (by, bes, ✓2)). A similar argument can

be invoked to show that type-2 agents could never achieve separation at a level of income

y2 such that y2 2 (by, ✓2h2 (bes, beq)].35 It can also be used to show that type-2 agents could

never achieve separation at a level of income y2 such that y2 2 [y1, by). In particular, for

type-2 agents to be able to achieve separation it must be that

(G7) y1 � T
�
y1
�
� p1qbeq > y2 � T

�
y2
�
� p1qeq

�
y2, bes, ✓2

�
.

Given the assumptions made about T (y), for y2 2 [y1, by) we have that [y2 � T (y2)] �
[y1 � T (y1)] � 0. But given that eq (y2, bes, ✓2) � beq < 0, the inequality [y2 � T (y2)] �
[y1 � T (y1)] < p1q [eq (y

2, bes, ✓2)� beq] is violated. Now consider the case where y2 < y1.

In this case we have that [y2 � T (y2)] � [y1 � T (y1)] < 0 and therefore one cannot rule

out the possibility that (G7) is satisfied and therefore separation is achievable. However,

even if type-2 agents could achieve separation at some value of income smaller than y1 ,

they would not have an incentive to do that. In fact, for separation to be attractive for

them it must be that

(G8) y2 � T
�
y2
�
� p2qeq

�
y2, bes, ✓2

�
> y1 � T

�
y1
�
� p2qeq

�
y1, bes, ✓

�
.

Together, the two inequalities (G7)-(G8) require that

(G9)

p2q
⇥
eq
�
y2, bes, ✓2

�
� eq

�
y1, bes, ✓

�⇤
<
⇥
y2 � T

�
y2
�⇤
�
⇥
y1 � T

�
y1
�⇤

< p1q
⇥
eq
�
y2, bes, ✓2

�
� beq

⇤
.

But since eq (y2, bes, ✓2)� beq < eq (y2, bes, ✓2)� eq
�
y1, bes, ✓

�
< 0, and p2q < p1q, we have that

(G10) p2q
⇥
eq
�
y2, bes, ✓2

�
� eq

�
y1, bes, ✓

�⇤
> p1q

⇥
eq
�
y2, bes, ✓2

�
� beq

⇤
,

35In this case the argument also takes into account that we have assumed that T (y) = 0 for y > by.
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i.e. (G7)-(G8) cannot be jointly satisfied.

We can then conclude that, for type-2 agents, the only feasible and attractive way

to achieve separation requires them to choose eq > beq and earn a pre-tax income that

is strictly larger than ✓2h (bes, beq). Denote by emin
q the minimum level of eq that allows

type-2 agents to achieve separation when choosing es = bes. Formally, emin
q is defined as

the solution to the following problem:

(G11) min
eq

✓2h (bes, eq) subject to y1 � T
�
y1
�
� p1qbeq � ✓2h (bes, eq)� p1qeq.

Furthermore, denote by
�
e2⇤s , e2⇤q

�
the e↵ort mix that solves the following unconstrained

maximization problem:

(G12) max
es,eq

✓2h (es, eq)� pses � p2qeq.

Notice that, since (bes, beq) is the e↵ort mix that maximizes ✓h (es, eq)� pses � p1qeq, it

must necessarily be that e2⇤s > bes and e2⇤q > beq.
Finally, define ysep as ysep ⌘ ✓2h

�
bes, emin

q

�
. Notice that, under the assumption that

T (y) = 0 for y � by, the gain that type-2 agents can obtain by separating from their

low-ability counterpart (instead of choosing the e↵ort mix (bes, beq) and pooling with them

at by) cannot exceed the amount
⇥
✓2
�
e2⇤s , e2⇤q

�
� pse2⇤s � p2qe

2⇤
q

⇤
�
⇥
by � psbes � p2qbeq

⇤
. Thus,

to ensure that type-2 agents never find attractive to separate from their low-ability coun-

terpart, it would su�ce to modify our initial assumption that T (y) = 0 for y � by and let

T (y), for y � ysep, be given by

(G13) T (y) =
⇥
✓2
�
e2⇤s , e2⇤q

�
� pse

2⇤
s � p2qe

2⇤
q

⇤
�
⇥
by � psbes � p2qbeq

⇤
> 0.

ii) What we have established so far is that a pooling equilibrium at by, where both

agents choose (bes, beq), is weakly better for type-2 agents than any separating equilibrium

that they can achieve. Moreover, for type-1 agents, a pooling equilibrium at by is strictly

better than a separating equilibrium; this is because under separation they achieve a

utility equal to y1 � T (y1)� psbes � p1qbeq, which is lower than by � psbes � p1qbeq (remember

that y1 < by and T (y1) > 0). Notice also that from the perspective of type-1 agents,

the best pooling allocation is the one where all agents earn by (the pooling allocation

(by,bc, bes, beq) was obtained as the outcome of the government’s problem where the utility of

type-1 agents was maximized within the set of pooling allocation, and therefore pooling

at by would be the preferred choice of type-1 agents even in the absence of taxes; the

conclusion is strengthened by the fact that we have defined an income tax function such

that T (y) � 0 for all values of y). Thus, the only thing that is left to check, in order to

establish that our function T (y) implements the optimal pooling allocation, is to verify
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whether, for type-2 agents, pooling at by is not dominated by pooling at some other level

of income weakly smaller than ✓h
�
bes, emin

q

�
.36 Clearly, given that p2q < p1q and the income

tax function is regressive in the interval [0, by], pooling at by is strictly preferred by type-2

agents to pooling at a level of income smaller than by. Notice, however, that pooling at a

value of y slightly higher than by would be strictly better for type-2 agents than pooling at

by if, as we have assumed so far, T (y) = 0 for y 2 [by, ✓2h
�
bes, emin

q

�
). Moreover, pooling at

a value of y slightly larger than by would still allow type-1 agents to achieve a utility that

is higher than the one achieved at a separating equilibrium. This represents a threat to

the implementability of the pooling allocation intended by the government. To eliminate

this threat we need to properly adjust the tax schedule T (y). For this purpose, notice

that, switching from pooling at by to pooling at a marginally higher level of income entails

for type-2 agents a maximum gain that is given by 1 � p2q
✓h2(bes,beq)

.37 Notice, also, that

the benefit of pooling at a marginally higher level of income is decreasing in income.38

Therefore, to make sure that type-2 agents weakly prefer pooling at by to pooling at levels

of income higher than by, it would su�ce to assume that T 0 (y) = 1� p2q
✓h2(bes,beq)

for y � by.
Combining the insights obtained in i) and ii), it follows that one way to implement

the allocation (by,bc, bes, beq) as a pooling tax equilibrium is to enforce a lower bound on es,

set at bes, supplemented by a two-bracket piecewise-linear income tax T (y) such that

T (y) =

8
><

>:

⇣
1
✓1 �

1
✓

⌘
p1q

h2(bes,beq)by +
⇣

1
✓
� 1

✓1

⌘
p1q

h2(bes,beq)y, for all y 2 [0, by]

(y � by)max

⇢
1� p2q

✓h2(bes,beq)
,
[✓2(e2⇤s ,e2⇤q )�pse2⇤s �p2qe

2⇤
q ]�[by�psbes�p2qbeq]

ysep�by

�
, for all y > by.

(G14)

H The case when neither signal is observable

Here we consider the special case where an individual’s tax liability is only a function of

his or her labor income. The income tax is defined by a set of pre-tax/post-tax income

bundles denoted by (yi, ci), where the total tax (or transfer, if negative) is defined by

ti ⌘ yi � ci. Recall that the wage rate earned by a given individual is defined as the

ratio of his or her pre-tax income y and the value of the h-function evaluated at the e↵ort

36Notice that we can safely disregard the case of pooling at ✓h
�
bes, emin

q

�
< y < ✓2h

�
bes, emin

q

�
; the

reason is that type-2 agents achieve separation when choosing eq � emin
q , and therefore there can be no

pooling at levels of pre-tax income higher than ✓h
�
bes, emin

q

�
.

37Since h1(bes,beq)
h2(bes,beq) < ps

p2
q
, the maximum gain can be calculated assuming that the additional output is

produced by only relying on an upward variation in eq.

38Switching from pooling at by to pooling at by+ ✏ raises the utility of type-2 agents by a larger amount

than switching from pooling at by + ✏ to pooling at by + 2✏.
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vector chosen by the individual.

H.1 A pooling tax equilibrium when neither signal is observable

Since there is no exogenous public revenue requirement, in a pooling equilibrium the

income tax system o↵ers the same pre-tax income ŷ to both types of agents, which is

also equal to the net income denoted by ĉ. Lemma 3 below shows that pooling equilibria

where all agents choose the same e↵ort vector do not exist.

Lemma 3. With only an income tax in place, a pooling tax equilibrium where both workers

choose the same e↵ort vector does not exist.

Proof. Consider a candidate pooling allocation (ŷ, ĉ) where both workers choose the same

e↵ort mix, given by the pair (ês, êq). By construction we have that ĉ = ŷ = ✓̄h(ês, êq),

with ✓̄ ⌘
P

i �
i✓i. Let ûi = ui(ĉ, ês, êq). Then ĉ � (pseis + piqe

i
q) = ûi, for i = 1, 2, will

describe the indi↵erence curves, in the (es, eq) plane, passing through the point (ês, êq).

Since the indi↵erence curve for agents of type i (with i = 1, 2) has a slope of �ps/piq,

it follows that the indi↵erence curve associated with type-2 workers is steeper than that

associated with their type-1 counterparts. The intersection of the two downward-sloping

indi↵erence curves creates a forked region northwest of point (ês, êq). Now suppose that

instead of choosing (bes, beq), type-2 agents deviate to the e↵ort mix
⇣
bes � ✏, beq + ps

p2q+⌫ ✏
⌘
,

where ✏ > 0 and 0 < ⌫ < p1q � p2q. By construction, the e↵ort mixture
⇣
bes � ✏, beq + ps

p2q+⌫ ✏
⌘

is inside the above forked region, which implies that it has a lower cost for type-2 agents

than the e↵ort mix (bes, beq), while it has a higher cost for type-1 agents. Therefore, by

deviating to the e↵ort mix
⇣
bes � ✏, beq + ps

p2q+⌫ ✏
⌘
, type-2 workers can credibly reveal their

productivity. Moreover, since in (es, eq)-space the isoquant by = ✓2h (es, eq) is strictly

below the isoquant by = ✓h (es, eq), it follows by continuity that for su�ciently small ✏,

the total output produced by a deviating type-2 worker would strictly exceed by. Thus, it
would also be the case that firms find it profitable to hire the deviating type-2 worker.

Note that due to the two dimensions of signaling, it is possible to have pooling in

income without pooling in the e↵ort vectors chosen by the two agents. Lemma 4 shows

that such an equilibrium will never be the social optimum.

Lemma 4. With only an income tax in place, pooling on income without pooling on the

e↵ort signals observed by firms is socially suboptimal.

Proof. When there is pooling of income without pooling of e↵ort signals, type 1 individuals

are: (a) paid their true productivity before taxes, and (b) pay zero net taxes. Both (a)

and (b) are true under laissez-faire. In addition, they have an undistorted e↵ort mix

under laissez-faire. So a pooling allocation can’t possibly be better than laissez-faire in

terms of type 1’s welfare. However, the laissez-faire equilibrium is clearly dominated by
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the socially optimal separating allocation implemented by the income tax, which entails

some redistribution and thus yields a higher level of utility for type 1 workers than under

laissez-faire. We conclude that pooling of income without pooling of e↵ort signals is

suboptimal.39

Lemma 3 and Lemma 4 together imply that under a pure income tax system the

optimal solution is given by a separating equilibrium in which types 1 and 2 earn di↵erent

levels of income.

Proposition 6. With only an income tax in place, pre-distribution cannot be achieved

and the social optimum is always given by a separating tax equilibrium.

H.2 A separating tax equilibrium when neither signal is observ-

able

In a separating tax equilibrium, agents are paid by the firms according to their true

productivity (a type i agent is paid a wage rate of ✓i). The problem of choosing the

tax schedule T (y) can be equivalently formulated as the problem of properly selecting

two pairs of pre-tax and after-tax incomes (yi, ci), where ci = yi � T (yi), y1 � c1 < 0

and y2 � c2 > 0. Besides satisfying the government budget constraint, the two bundles

must be chosen in such a way that they are incentive-compatible: agents of type i, for

i = 1, 2 must be weakly better o↵ at the bundle intended for them, i.e. the bundle (yi, ci),

than at the bundle intended for agents of type j 6= i, i.e. the bundle (yj, cj). The main

di↵erence from the standard Mirrleesian (1971) setup is the presence of a second layer

of asymmetric information between workers and employers. The latter implies that to

render the allocation incentive compatible, one should not only consider (as stated above)

mimicking by replication (that is, choosing the bundle intended for the other type), but

also o↵-equilibrium path mimicking options. We turn next to explore this in detail.

Consider first the bundle associated with type-1 workers. As we will formally prove

below, in the socially optimal separating equilibrium, type-2 workers will never resort

to mimicking by replication (they will hence strictly prefer their bundle to choosing the

bundle intended for type-1 workers). In the standard model, mimicking by replication

is the only option available to type-2 workers and hence the associated IC constraint

will be binding in the optimal solution. In our setup, in contrast, there will be superior

alternatives for type 2, due to the presence of asymmetric information between workers

and employers.

39The argument is similar to the standard argument why bunching with two types is never optimal

in a standard Mirrleesian setting without asymmetric information between firms and workers, see, e.g.,

Stiglitz (1982).
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As in equilibrium, type-2 workers will never mimic by replication, if type-1 agents

choose the bundle (y1, c1) intended for them, they would select an e�cient mix of es and

eq, denoted by (e1s(y
1), e1q(y

1)), with an associated cost given by:

(H1) R1(y1) = min
es,eq

R1(es, eq) subject to h(es, eq)✓
1 = y1.

The only case in which the e↵ort mix is being distorted in the optimal solution, is when an

IC constraint associated with mimicking by replication is binding in the optimal solution.

In such a case, distorting the e↵ort mix would serve to mitigate the constraint.

Notice that e�ciency in the choice of the e↵ort mix means that e1s(y
1) and e1q(y

1)

satisfy the condition

(H2)
@h
�
e1s(y

1), e1q(y
1)
�
/@e1s

@h
�
e1s(y

1), e1q(y
1)
�
/@e1q

=
ps
p1q
,

which equates the marginal rate of technical substitution (MRTS) to the marginal cost

ratio.

In contrast to type-1 workers, the e↵ort mix of type-2 workers may well be distorted

in the optimal solution. This is because, as we will formally show below, mimicking by

replication would be desirable for type-1 agents. If the associated IC constraint would

bind, distorting the e↵ort mix would serve to alleviate the constraint. If they were to

choose the bundle (y2, c2) intended for them, type-2 agents would select a mix of es and

eq, denoted by (e2s(y
2), e2q(y

2)), with an associated cost given by:

R2(y2) = min
es,eq

R2(es, eq) subject to(H3)

h(es, eq)✓
2 = y2(H4)

c1 �R1
�
y1
�
� c2 �R2

�
y2
�
�
�
p1q � p2q

�
e2q.(H5)

The second constraint captures the fact that type-2 agents take also into account that

the e↵ort mix that they choose must not be attractive for type-1 agents. Therefore, the

e↵ort mix chosen by type-2 agents will depend on whether this constraint is binding or

slack. If it is slack, the e↵ort mix (e2s(y
2), e2q(y

2)) will satisfy the e�ciency condition
@h(e2s,e2q)/e2s
@h(e2s,e2q)/e2q

= ps
p2q
; if the constraint is binding, the e↵ort mix will satisfy the inequality

@h(e2s,e2q)/e2s
@h(e2s,e2q)/e2q

> ps
p2q

(i.e., it will be distorted towards eq, the e↵ort dimension on which type-2

agents have a comparative advantage).

Let’s now consider the incentive-compatibility constraints that should be accounted

for by the government in the choice of the two bundles (yi, ci). To implement a given

separating equilibrium, the government must guard against various deviating strategies

available to agents, i.e., the government must ensure that no agent has an incentive to
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deviate from the expected behavior. In principle, there are three deviating strategies that

an agent of type i can choose to earn the income yj intended for the other type. Agents

of type i can choose an e↵ort vector that allow them to be compensated according to

(i) the productivity of the other type, (ii) the average productivity, or (iii) their true

productivity. We consider these three deviating strategies in more detail below. Since

a deviating agent is someone who earns an amount of income that is intended for some

other type of agent, we will use the word ”mimicker” to refer to a deviating agent in all

three cases.

A first deviating strategy is for type-i agents to earn the income level yj by choosing

the e↵ort mix (ejs(y
j), ejq(y

j)) chosen in equilibrium by type-j agents. By behaving in this

way, a type-i mimicker would be paid a wage rate ✓j (i.e., according to the productivity

of the type being mimicked) and would incur the following costs:

(H6) R̆i(yj) = pisĕ
i
s(y

j) + piqĕ
i
q(y

j),

where (ĕis(y
j), ĕiq (y

j)) = (ejs(y
j), ejq(y

j)) denotes the e↵ort mix of a mimicker of type i,

which is identical to the e↵ort mix chosen in equilibrium by agents of type j.

In addition to the deviating strategy described above, in which a mimicker of type

i chooses the e↵ort vector chosen in equilibrium by agents of type j 6= i, there are also

deviating strategies in which a mimicker chooses a o↵-equilibrium e↵ort vector.

The first of such strategies is the possibility for a type-i agent to earn the income

level yj by choosing an e↵ort vector that is at once: i) di↵erent from the one chosen

in equilibrium by type-j agents, ii) attractive also to type-j agents, and iii) su�cient to

allow firms to make non-negative profits when paying agents according to the average

productivity ✓̄. For a type-i mimicker, the most attractive of such strategies is the one

with associated costs given by:

R̂i(yj) = min
(es,eq) 6=(ejs(yj),e

j
q(yj))

Ri(es, eq)(H7)

subject to:

Rj(es, eq)  Rj(yj),(H8)

yj  h(es, eq)✓̄.(H9)

The constraint (H8) captures the fact that the deviating strategy is feasible in the sense

that it also induces type j agents to change their e↵ort vectors. The constraint (H9)

ensures that the e↵ort vector is su�cient to provide a non-negative profit for the hiring firm

in a pooling equilibrium where both agents are paid according to the average productivity

✓̄. Lemma 5 shows that, in equilibrium, this out-of-equilibrium deviation would never be

profitable for type-1 agents.
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Lemma 5. The IC constraint associated with type-1 agents mimicking by pooling with

their, type-2, high-skilled counterparts will be slack in the optimal solution.

Proof. Under the proposed deviating strategy, both types of workers would earn y2 while

being paid according to the average productivity ✓̄ and exerting the same e↵ort vector

(es, eq) satisfying h(es, eq)✓̄ � y2. To sustain the deviation to the pooling allocation, in

equilibrium, type-2 agents should be indi↵erent between the pooling allocation and the

bundle intended for them. The latter follows from a combination of two weak inequalities:

the intended bundle should be weakly preferred to the pooling allocation (by construction

of the equilibrium) and at the same time the pooling allocation should be weakly preferred

to the intended bundle (to make the deviation to the pooling allocation feasible). However,

by Lemma 3, we can find an alternative bundle to the presumably optimal bundle o↵ered

to type-2 agents in equilibrium, that will separate them from type-1 agents and deliver

them a strictly higher level of utility. This yields the desired contradiction, as, by o↵ering

the new bundle to type-2 agents, the government can create a slack in the IC-constraint

of type-2 agents and thereby enhance redistribution towards type-1 agents.

The next lemma shows that the o↵-equilibrium strategy with cost R̂i(yj) is always

superior (in the sense of being less costly) for type-2 agents to the mimicking strategy of

replicating the e↵ort vector chosen in equilibrium by type-1 agents.

Lemma 6. For a type-2 agent, it is always more attractive to earn y1 while being rewarded

according to average productivity ✓̄ than to earn y1 while being rewarded according to low

productivity ✓1 < ✓̄. In other words, R̂2(y1) < R̆2(y1).

Proof. Let (e1s(y
1), e1q(y

1)) denote the e↵ort vector chosen by type-1 agents at the bundle

intended for them by the government, and let ēs = e1s(y
1) � ✏ and ēq = e1q(y

1) � ✏,

for small ✏ > 0, represent a candidate e↵ort vector for a type-2 mimicker. As ✓̄ > ✓1

and y1 = h(e1s(y
1), e1q(y

1)) · ✓1, it follows by continuity that h(ēs, ēq) · ✓̄ > y1. Hence, the

suggested e↵ort vector does not violate the constraint requiring firms to make non-negative

profits. By construction, R2(ēs, ēq) < R̆2(y1) and R1(ēq, ēs) < R1(y1), so the candidate

e↵ort vector is preferred by both types of workers and induces pooling. Moreover, by

virtue of the fact that R̂2(y1) represents the minimal cost for type 2 under a pooling

equilibrium, we have that R̂2(y1)  R2(ēs, ēq). Thus, it follows that R̂2(y1) < R̆2(y1).

This completes the proof.

The other deviating strategy involving the choice of an o↵-equilibrium e↵ort vector is

the one in which type-i agents mimic the earned income yj of type-j agents, but invest

in the signals in such a way as to di↵erentiate themselves from type-j agents and thereby

succeed in being compensated by firms according to their true productivity ✓i. For a

type-i mimicker, the most attractive of such strategies is the one with associated costs
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given by:

R̃i(yj) = min
(es,eq) 6=(ejs(yj),e

j
q(yj))

Ri(es, eq)(H10)

subject to:

Rj(es, eq) � Rj(yj),(H11)

yj  h(es, eq)✓
i.(H12)

In the above problem, the constraint (H11) ensures that the e↵ort vector chosen by type-i

mimickers is not attractive to type-j agents, thereby allowing type-i mimickers to separate

from their type-j counterparts. The constraint (H12) instead ensures that the e↵ort vector

chosen by type-i mimickers is su�cient to produce yj. Notice that since ✓2 > ✓1, and given

our assumptions that p1s = p2s ⌘ ps and p1q > p2q, it necessarily follows that R̃2(y1) < R1(y1)

and R̃1(y2) > R2(y2). Notice also that there are two possible scenarios in which type-

i agents succeed in separating from type-j agents at income level yj: one in which the

constraint (H11) is binding, and another in which it is slack. In the former case, the agent

behaving as a mimicker will use a distorted e↵ort mix (i.e, an e↵ort mix that violates the

condition @h(es,eq)/@es
@h(es,eq)/@eq

= ps
piq
); in the latter case, the e↵ort mix chosen by the mimicker will

be undistorted.

Consider now which of the deviating strategies described above are really relevant,

from the point of view of the government, when choosing the bundles (yi, ci). As we have

previously pointed out, of the three deviating strategies that are potentially available

to type-2 agents, the deviating strategy with associated cost R̂2(y1) is necessarily more

attractive than the one with associated cost R̆2(y1). The government can then safely

neglect the latter. Thus, a first incentive-compatibility constraint that is relevant for the

government is that

c2 �R2(y2) � c1 �min
n
eR2(y1), R̂2(y1)

o
,(H13)

Regarding type-1 agents we know, given the content of Lemma 1, that the only two

available strategies are the one with associated cost R̆1(y2) and the one with associated

cost R̃1(y2). Thus, it would appear that a second IC-constraint that is relevant for the

government is

c1 �R1(y1) � c2 �min
n
R̆1(y2), eR1(y2)

o
.(H14)

Suppose however that the social optimum is a separating equilibrium and that the con-

straint (H14) is binding with min
n
R̆1(y2), eR1(y2)

o
= eR1(y2). Given that y1� c1 < 0 and

y2 � c2 > 0, the government could then do better by removing (y1, c1) from the menu of

bundles available on the income tax schedule and letting type-1 agents bear the cost of
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eR1(y2) and pool with type-2 agents at (y2, c2). type-1 agents would not su↵er, since we

have, by assumption, that c1�R1(y1)) = c2� eR1(y2). At the same time, since y1� c1 < 0

and y2 � c2 > 0 in the supposedly optimal separating equilibrium, the government would

experience an increase in revenue. Thus, if min
n
R̆1(y2), eR1(y2)

o
= eR1(y2), then the

constraint (H14) is necessarily slack. Put di↵erently, the only relevant IC-constraint per-

taining to the behavior of type-1 agents is c1 � R1(y1) � c2 � R̆1(y2). However, notice

that this constraint is already embedded in the optimization problem solved by type-2

agents. This implies that it is possible to formulate the government’s problem in a way

that does not include this IC-constraint as a separate constraint. In order to do this,

the only requirement is that one rewrites the IC-constraint pertaining to type-2 agents as

follows:

c2 �R2(y2, c2, y1, c1) � c1 �min
n
eR2(y1), R̂2(y1)

o
.(H15)

The constraint (H15) embeds implicitly also the IC-constraint pertaining to type-1 agents

(c1 � R1(y1) � c2 � R̆1(y2)) because it highlights that the minimum cost sustained by

type-2 agents in order to produce y2 is not only a function of y2 but also of the variables

c2, y1 and c1, which all a↵ect the incentives for type-1 agents to behave as mimickers.

This observation allows restating the government’s optimal tax problem in a simplified

way as follows:

(H16) max
{yi,ci}i=1,2

c1 �R1(y1)

subject to the government budget constraint

(H17)
X

i

�i(yi � ci) = 0,

and the downward IC-constraints

c2 �R2(y2, c2, y1, c1) � c1 � eR2(y1),(H18)

c2 �R2(y2, c2, y1, c1) � c1 � R̂2(y1).(H19)

Denote respectively by µ, �2s and �2p the Lagrange multipliers attached to constraint

(H17), (H18) and (H19). The first order conditions with respect to, respectively y1, c1,
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y2 and c2, are

� @R1 (y1)

@y1
�
�
�2s + �2p

� @R2 (y2, c2, y1, c1)

@y1
+ �2s@ eR2 (y1)

@y1
+ �2p@ bR2 (y1)

@y1
+ µ�1 = 0,

(H20)

1�
�
�2s + �2p

�
�
�
�2s + �2p

� @R2 (y2, c2, y1, c1)

@c1
� µ�1 = 0,

(H21)

�
�
�2s + �2p

� @R2 (y2)

@y2
+ µ�2 = 0,

(H22)

�2s + �2p �
�
�2s + �2p

� @R2 (y2, c2, y1, c1)

@c2
� µ�2 = 0.

(H23)

Adding up (H21) and (H23), and simplifying terms, gives

(H24) 1�
�
�2s + �2p

� @R2 (y2, c2, y1, c1)

@c1
�
�
�2s + �2p

� @R2 (y2, c2, y1, c1)

@c2
= µ.

But given that
@R2(y2,c2,y1,c1)

@c1 +
@R2(y2,c2,y1,c1)

@c2 = 0 (a joint marginal increase in c1 and c2

has no impact on the upward IC-constraint that enters the optimization problem solved

by type-2 agents, and therefore has no impact on R2 (y2, c2, y1, c1)), eq. (H24) implies

that µ = 1. Taking this into account we can rewrite (H22) and (H23) as, respectively

�
�
�2s + �2p

� @R2 (y2)

@y2
= ��2,(H25)

�
�2s + �2p

�✓
1� @R2 (y2, c2, y1, c1)

@c2

◆
= �2.(H26)

Dividing (H25) by (H26) and rearranging terms gives

(H27) 1�
@R2(y2)

@y2

1� @R2(y2,c2,y1,c1)
@c2

= 0.

To interpret (H27) in terms of the properties of the implementing tax function, consider

the individual optimization problem for type-2 agents under a nonlinear income tax T (y).

This can be described as follows:

(H28) max
e2s,e

2
q

✓2h
�
e2s, e

2
q

�
� T

�
✓2h

�
e2s, e

2
q

��
� pse

2
s � p2qe

2
q
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subject to the IC-constraint

(H29) U1 � ✓2h
�
e2s, e

2
q

�
� T

�
✓2h

�
e2s, e

2
q

��
� pse

2
s �

�
p1q � p2q

�
e2q.

Equivalently, the optimization problem of type-2 agents can be reformulated as a two-stage

problem. In the first stage, for a given amount of production y, consumption y�T (y), and

for a given level of utility U1 achieved by type-1 agents when not behaving as mimickers,

type-2 agents choose the e↵ort mix that minimizes production costs subject to the IC-

constraint prescribing that type-1 agents have no incentive to replicate the choices of

type-2 agents. This gives a conditional indirect utility function

(H30) V 2
�
y, y � T (y) , U1

�
= y � T (y)�R

�
y, y � T (y) , U1

�
,

where R (y, y � T (y) , U1) = pse2s (y, y � T (y) , U1) + p2qe
2
q (y � T (y) , U1). Notice that

type-2 agents will not necessarily choose an e↵ort mix that satisfies the e�ciency condition
h1(e2s,e2q)
h2(e2s,e2q)

= ps
p2q

(where h1

�
e2s, e

2
q

�
⌘ @h(e2s,e2q)

@e2s
and h2

�
e2s, e

2
q

�
⌘ @h(e2s,e2q)

@e2q
). Given that the

optimization problem solved by type-2 agents is subject to an IC-constraint that is aimed

at deterring type-1 agents from replicating their e↵ort choices, the e�ciency condition
h1(e2s,e2q)
h2(e2s,e2q)

= ps
p2q

will be satisfied only if the IC-constraint is not binding. If instead the

IC-constraint is binding, the e↵ort mix chosen by type-2 agents will satisfy the inequality
h1(e2s,e2q)
h2(e2s,e2q)

> ps
p2q

(i.e. it will be distorted towards eq, which reflects the circumstance that

type-2 agents have a comparative advantage in the quality dimension of e↵ort).

At the second stage y is optimally chosen subject to the link between pre-tax earnings

and post-tax earnings determined by the tax schedule T (y). The first order condition for

this problem is given by

(H31) 1� T 0 (y)� @R (y, y � T (y) , U1)

@y
� @R (y, y � T (y) , U1)

@c
(1� T 0 (y)) = 0,

from which we can derive the following implicit characterization of the marginal income

tax rate faced by type-2 agents:

(H32) T 0 (y) =
1� @R(y,y�T (y),U1)

@y � @R(y,y�T (y),U1)
@c

1� @R(y,y�T (y),U1)
@c

= 1�
@R(y,y�T (y),U1)

@y

1� @R(y,y�T (y),U1)
@c

.

Thus, combining (H27) and (H32), we can conclude that

(H33) T 0 �y2
�
= 0,

namely that the constrained social optimum can be implemented letting type-2 agents face

a zero marginal income tax rate. It is important to emphasize that this result does not
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imply that y2 is going to be equal to its first-best e�cient level. If the upward IC-constraint

that enters the optimization problem of type-2 agents is binding at the constrained social

optimum, y2 is going to exceed its first-best e�cient level. What (H27) tells us is that,

even if the socially (constrained) optimal value of y2 is above its first-best e�cient level,

there is no reason to use the marginal income tax rate faced by type-2 agents to a↵ect

the incentives underlying their decision process. The reason is that these incentives are

already aligned with those underlying the social decision problem: given that the upward

IC-constraint is already part, even in the absence of taxation, of the optimization problem

solved by type- 2 agents, there is no need to use the policy instruments to let type-2 agents

internalize this constraint.

Consider now the first order conditions (H20)-(H21) and rewrite them, respectively,

as

� @R1 (y1)

@y1
=
�
�2s + �2p

� @R2 (y2, c2, y1, c1)

@y1
� �2s@ eR2 (y1)

@y1
� �2p@ bR2 (y1)

@y1
� �1,(H34)

1 =
�
�2s + �2p

�✓
1 +

@R2 (y2, c2, y1, c1)

@c1

◆
+ �1.(H35)

Dividing (H34) by (H35) and multiplying by the right hand side of (H35) gives

�@R1 (y1)

@y1

�
�2s + �2p

�✓
1 +

@R2 (y2, c2, y1, c1)

@c1

◆
+ �1

�

=
�
�2s + �2p

� @R2 (y2, c2, y1, c1)

@y1
� �2s@ eR2 (y1)

@y1
� �2p@ bR2 (y1)

@y1
� �1,(H36)

or equivalently:

(H37) �1

✓
1� @R1 (y1)

@y1

◆
=
�
�2s + �2p

� @R1 (y1)

@y1
� �2s@ eR2 (y1)

@y1
� �2p@ bR2 (y1)

@y1

+
�
�2s + �2p

�✓@R2 (y2, c2, y1, c1)

@y1
+

@R2 (y2, c2, y1, c1)

@c1
@R1 (y1)

@y1

◆
.

Notice however that eq. (H37) can be further simplified by realizing that a marginal

increase in y1, coupled with an upward adjustment in c1 by
@R1(y1)

@y1 , leaves una↵ected the

utility of type-1 agents and therefore has no impact on R2 (y2, c2, y1, c1). Thus, (H37) can

be equivalently restated as

(H38) 1� @R1 (y1)

@y1
=

�2s

�1

 
@R1 (y1)

@y1
� @ eR2 (y1)

@y1

!
+

�2p

�1

 
@R1 (y1)

@y1
� @ bR2 (y1)

@y1

!
.

To interpret (H38) in terms of the properties of the implementing tax function, consider

the individual optimization problem for type-1 agents under a nonlinear income tax T (y).
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This can be described as follows:

(H39) max
e1s,e

1
q

✓1h
�
e1s, e

1
q

�
� T

�
✓1h

�
e1s, e

1
q

��
� pse

1
s � p1qe

1
q.

Once again, this optimization problem can be equivalently reformulated as a two-stage

problem. In the first stage, for a given amount of production y and consumption y�T (y),

type-1 agents choose the e↵ort mix that minimizes production costs, i.e. the e↵ort mix

that satisfies the condition
h1(e1s,e1q)
h2(e1s,e1q)

= ps
p1q

(where h1

�
e1s, e

1
q

�
⌘ @h(e1s,e1q)

@e1s
and h2

�
e1s, e

1
q

�
⌘

@h(e1s,e1q)
@e1q

). This gives a conditional indirect utility function

(H40) V 1 (y, y � T (y)) = y � T (y)�R (y) ,

where R (y) = pse1s (y) � p1qe
1
q (y). At the second stage y is optimally chosen subject to

the link between pre-tax earnings and post-tax earnings determined by the tax schedule

T (y). The first order condition for this problem is given by

(H41) 1� T 0 (y)� @R (y)

@y
= 0,

from which we can derive the following implicit characterization of the marginal income

tax rate faced by type-1 agents:

(H42) T 0 (y) = 1� @R (y)

@y
.

Thus, combining (H38) and (H42), we can conclude that

(H43) T 0 �y1
�
=

�2s

�1

 
@R1 (y1)

@y1
� @ eR2 (y1)

@y1

!
+

�2p

�1

 
@R1 (y1)

@y1
� @ bR2 (y1)

@y1

!
.

To shed light on the sign of T 0 (y1), consider first
@R1(y1)

@y1 . When the tax liability is only a

function of earned income we know that, when not behaving as mimickers, type-1 agents

choose an undistorted (e�cient) e↵ort mix. This means that

(H44)
@R1 (y1)

@y1
=

ps
✓1h1

�
e1s, e

1
q

� =
p1q

✓1h2

�
e1s, e

1
q

� ,

where subscripts on h are again used to denote partial derivatives.

Consider now
@ eR2(y1)

@y1 . Two possibilities should separately be considered: i) in order to

earn y1 while being remunerated according to their true productivity ✓2, type-2 agents are

not forced to choose a distorted e↵ort mix; ii) in order to earn y1 while being remunerated

according to their true productivity ✓2, type-2 agents are forced to choose a distorted
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e↵ort mix.

Under case i) the e↵ort mix chosen by a type-2 mimicker, denoted by
�
ee2s, ee2q

�
, satisfies

the condition

h1

�
ee2s, ee2q

�
/h2

�
ee2s, ee2q

�
= ps/p

2
q(H45)

and therefore

(H46)
@ eR2 (y1)

@y1
=

ps
✓2h1

�
ee2s, ee2q

� =
p2q

✓2h2

�
ee2s, ee2q

� ,

implying that

(H47)
@R1 (y1)

@y1
� @ eR2 (y1)

@y1
=

 
1

✓1h1

�
e1s, e

1
q

� � 1

✓2h1

�
ee2s, ee2q

�
!
ps.

Notice that the sign of (H47) is opposite to the sign of @(✓h1)
@✓ + @(✓h1)

@pq

dpq
d✓ . Furthermore, we

have that

(H48)
@ (✓h1)

@✓
+

@ (✓h1)

@pq

dpq
d✓

= h1 + ✓


h11

✓
des
d✓

+
des
dpq

dpq
d✓

◆
+ h12

✓
deq
d✓

+
deq
dpq

dpq
d✓

◆�
.

For a given y, an undistorted e↵ort mix solves the system of equations:

✓h (es, eq) = y,(H49)

pqh1 (es, eq)� psh2 (es, eq) = 0.(H50)

Di↵erentiating (H49)-(H50) with respect to es, eq and ✓ gives, in matrix form

"
✓h1 (es, eq) ✓h2 (es, eq)

pqh11 (es, eq)� psh12 (es, eq) pqh12 (es, eq)� psh22 (es, eq)

#"
des/d✓

deq/d✓

#
=

"
�h (es, eq)

0

#
,

from which one obtains

des
d✓

= �h
pqh12 � psh22

�
,(H51)

deq
d✓

= h
pqh11 � psh12

�
,(H52)

where � ⌘ ✓ {h1 [pqh12 � psh22]� h2 [pqh11 � psh12]} > 0.

Di↵erentiating (H49)-(H50) with respect to es, eq and pq gives, in matrix form

"
✓h1 (es, eq) ✓h2 (es, eq)

pqh11 (es, eq)� psh12 (es, eq) pqh12 (es, eq)� psh22 (es, eq)

#"
des/dpq

deq/dpq

#
=

"
0

�h1 (es, eq)

#
,
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from which one obtains

des
dpq

=
✓h1h2

�
,(H53)

deq
dpq

= �✓ (h1)
2

�
.(H54)

Plugging (H51)-(H54) into (H48) gives

@ (✓h1)

@✓
+

@ (✓h1)

@pq

dpq
d✓

= h1 + ✓

"
h11

✓
�h

pqh12 � psh22

�
+

✓h1h2

�

dpq
d✓

◆
+ h12

 
h
pqh11 � psh12

�
� ✓ (h1)

2

�

dpq
d✓

!#

= h1 +
✓

�


�pqhh11h12 + pshh11h22 + pqhh12h11 � pshh12h12 + ✓h1h2h11

dpq
d✓

� ✓ (h1)
2 h12

dpq
d✓

�

= h1 +
✓

�


(h11h22 � h12h12) psh+ (h2h11 � h1h12) ✓h1

dpq
d✓

�
.

(H55)

Given that h11h22 � h12h12 > 0 (by concavity of the h-function) and dpq
d✓ < 0, we can

conclude that

(H56)
@ (✓h1)

@✓
+

@ (✓h1)

@pq

dpq
d✓

> 0,

which in turn implies that 1
✓1h1(e1s,e1q)

> 1
✓2h1(ee2s,ee2q)

in (H47).

Under case ii) the e↵ort mix
�
ee2s, ee2q

�
chosen by a type-2 mimicker is by assumption

distorted (i.e., it violates the condition h1

�
ee2s, ee2q

�
/h2

�
ee2s, ee2q

�
= ps/p2q) and can be obtained

as a solution to the following system of equations:

psee2s + p1qee2q = pse
1
s + p1qe

1
q,(H57)

✓2h
�
ee2s, ee2q

�
= y1,(H58)

where pse1s + p1qe
1
q represents the total costs incurred by type-1 agents to earn y1 when

abiding by the e�ciency condition h1/h2 = ps/p1q and being remunerated according to

their true productivity ✓1. For a concave h-function there will be two pairs
�
ee2s, ee2q

�
that

solve the system (H57)-(H58): one pair that lies north-west of
�
e1s, e

1
q

�
and one pair that

lies south-east of
�
e1s, e

1
q

�
. Given that p2q < p1q and that both pairs

�
ee2s, ee2q

�
lie on the same

iso-cost line, pertaining to type-1 agents, with slope �ps/p1q, it follows that the least costly

pair for a type-2 mimicker will be the one lying north-west of
�
e1s, e

1
q

�
. Thus, ee2s < e1s and

ee2q > e1q; moreover, at the relevant
�
ee2s, ee2q

�
-pair, the e↵ort mix will be distorted towards

eq, i.e. we will have that h1/h2 > ps/p2q.
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Taking into account that d
�
pse1s + p1qe

1
q

�
/dy1 = dR1(y1)/dy1 = ps/

⇥
✓1h1

�
e1s, e

1
q

�⇤
,

di↵erentiating (H57)-(H58) with respect to ee2s, ee2q and y1 gives, in matrix form:

(H59)

"
ps p1q

✓2h1

�
ee2s, ee2q

�
✓2h2

�
ee2s, ee2q

�
# "

dee2s/dy1

dee2q/dy1

#
=

2

4
ps

✓1h1(e1s,e1q)
1

3

5 .

Defining  as

(H60)  ⌘
⇥
psh2

�
ee2s, ee2q

�
� p1qh1

�
ee2s, ee2q

�⇤
✓2,

we have that

dee2s
dy1

=

ps
✓1h1(e1s,e1q)

✓2h2

�
ee2s, ee2q

�
� p1q

 
,(H61)

dee2q
dy1

=
ps � ps

✓1h1(e1s,e1q)
✓2h1

�
ee2s, ee2q

�

 
,(H62)

and therefore

@ eR2 (y1)

@y1
= ps

dee2s
dy1

+ p2q
dee2q
dy1

= ps

ps
✓1h1(e1s,e1q)

✓2h2

�
ee2s, ee2q

�
� p1q

 
+ p2q

ps � ps
✓1h1(e1s,e1q)

✓2h1

�
ee2s, ee2q

�

 

=

�
p2q � p1q

�
ps + (ps)

2 ✓2h2(ee2s,ee2q)
✓1h1(e1s,e1q)

� psp2q
✓2h1(ee2s,ee2q)
✓1h1(e1s,e1q)

 
.(H63)

Notice that, since h1

�
ee2s, ee2q

�
/h2

�
ee2s, ee2q

�
> ps/p2q, we have that  < 0.
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The di↵erence
@R1(y1)

@y1 � @ eR2(y1)
@y1 is then given by

@R1 (y1)

@y1
� @ eR2 (y1)

@y1
=

ps
✓1h1

�
e1s, e

1
q

� �

�
p2q � p1q

�
ps + (ps)

2 ✓2h2(ee2s,ee2q)
✓1h1(e1s,e1q)

� psp2q
✓2h1(ee2s,ee2q)
✓1h1(e1s,e1q)

 

=

 �
�
p2q � p1q

�
✓1h1

�
e1s, e

1
q

�
�

ps

✓2h2(ee2s,ee2q)
✓1h1(e1s,e1q)

� p2q
✓2h1(ee2s,ee2q)
✓1h1(e1s,e1q)

�
✓1h1

�
e1s, e

1
q

�

 ✓1h1

�
e1s, e

1
q

� ps

=

⇥
psh2

�
ee2s, ee2q

�
� p1qh1

�
ee2s, ee2q

�⇤
✓2 �

�
p2q � p1q

�
✓1h1

�
e1s, e

1
q

�

 ✓1h1

�
e1s, e

1
q

� ps

�


ps

✓2h2(ee2s,ee2q)
✓1h1(e1s,e1q)

� p2q
✓2h1(ee2s,ee2q)
✓1h1(e1s,e1q)

�
✓1h1

�
e1s, e

1
q

�

 ✓1h1

�
e1s, e

1
q

� ps

=
p2qh1

�
ee2s, ee2q

�
✓2 � p1qh1

�
ee2s, ee2q

�
✓2 �

�
p2q � p1q

�
✓1h1

�
e1s, e

1
q

�

 ✓1h1

�
e1s, e

1
q

� ps

=

"
h1

�
ee2s, ee2q

�

h1

�
e1s, e

1
q

� ✓
2

✓1
� 1

#
�
p2q � p1q

� ps
 
.(H64)

Since p2q � p1q < 0 and  < 0, we have that

(H65) sign

(
@R1 (y1)

@y1
� @ eR2 (y1)

@y1

)
= sign

(
h1

�
ee2s, ee2q

�

h1

�
e1s, e

1
q

� ✓
2

✓1
� 1

)
.

Given that, as we have previously noticed, ee2s < e1s and ee2q > e1q, it follows that h1

�
ee2s, ee2q

�
>

h1

�
e1s, e

1
q

�
, guaranteeing that

h1(ee2s,ee2q)
h1(e1s,e1q)

✓2

✓1 > 1. Thus, as we had shown for case i), we can

once again establish that
@R1(y1)

@y1 � @ eR2(y1)
@y1 > 0.

Now consider the term
@ bR2(y1)

@y1 appearing in (H43). Even for this term one should

in principle distinguish two scenarios. Under the first, in order to earn y1 while being

remunerated according to the average productivity ✓, a type-2 agent is not forced to

choose a distorted e↵ort mix. Under the second scenario, in order to earn y1 while being

remunerated according to the average productivity ✓, a type-2 agent is forced to choose

a distorted e↵ort mix. However, it is easy to show that the second scenario can be safely

neglected for the purposes of our analysis. The reason is that, if it is indeed the case that,

in order to earn y1 while being remunerated according to the average productivity ✓, type-

2 agents are forced to choose a distorted e↵ort mix, it necessarily follows that there is

another, more attractive, deviating strategy available to them. To understand this point,

consider first the system of equations that determine bes and beq under the assumption that,

in order to earn y1 while being remunerated according to the average productivity ✓, a
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type-2 agent is forced to choose a distorted e↵ort mix:

psbes + p1qbeq = pse
1
s + p1qe

1
q(H66)

✓h (bes, beq) = y1,(H67)

where pse1s + p1qe
1
q represents the total costs incurred by type-1 agents to earn y1 when

abiding by the e�ciency condition h1/h2 = ps/p1q and being remunerated according to

their true productivity ✓1. For a concave h-function there will be two pairs (bes, beq) that
solve the system (H66)-(H67): one pair that lies north-west of

�
e1s, e

1
q

�
and one pair that

lies south-east of
�
e1s, e

1
q

�
. Given that p2q < p1q and that both pairs (bes, beq) lie on the same

iso-cost line, pertaining to type-1 agents, with slope �ps/p1q, it follows that the least costly

pair for a type-2 mimicker will be the one lying north-west of
�
e1s, e

1
q

�
.

Now consider again eqs. (H57)-(H58), i.e. the system of equations that determine ee2s
and ee2q under the assumption that, in order to earn y1 while being remunerated according

to their true productivity ✓2, type-2 agents are forced to choose a distorted e↵ort mix.

Given that ✓2 > ✓, the isoquant described by (H58) lies strictly below the isoquant

described by (H67). Therefore, since both
�
ee2s, ee2q

�
and (bes, beq) lie on the same iso-cost

line, pertaining to type-1 agents, with slope �ps/p1q, it must be that
�
ee2s, ee2q

�
lies north-west

of (bes, beq): ee2s < bes, ee2q > beq. But then, the fact that p2q < p1q (implying that the iso-cost

lines pertaining to type-2 agents have slope �ps/p2q < �ps/p1q) implies that, necessarily,

choosing
�
ee2s, ee2q

�
represents for a type-2 mimicker a more attractive deviating strategy

than choosing (bes, beq).
As a consequence of the above discussion, a necessary condition for the deviating strat-

egy with associated cost bR2 (y1) to be the least costly mimicking strategy for a type-2

agent is that, in order to earn y1 while being remunerated according to the average pro-

ductivity ✓, type-2 agents are not forced to choose a distorted e↵ort mix. Put di↵erently,

a necessary condition for �2p > 0 is that
@ bR2(y1)

@y1 = ps
✓h1(bes,beq)

=
p2q

✓h2(bes,beq)
. It then follows

that, when �2p > 0, it must necessarily be that

(H68)

@R1 (y1)

@y1
� @ bR2 (y1)

@y1
=

ps
✓1h1

�
e1s, e

1
q

� � ps
✓h1 (bes, beq)

=

 
1

✓1h1

�
e1s, e

1
q

� � 1

✓h1 (bes, beq)

!
ps.

Noticing that the sign of (H68) is opposite to the sign of @(✓h1)
@✓ + @(✓h1)

@pq

dpq
d✓ , we can again

rely on (H56) to conclude that
@R1(y1)

@y1 � @ bR2(y1)
@y1 > 0.

Going back to (H43) and summarizing our results for T 0 (y1), we have that T 0 (y1) is

necessarily positive (given that our max-min social welfare function implies that at least

one of the two downward IC-constraints, with associated multipliers �2s and �2p, will be

binding). Notice also that, if in order to earn y1 while being remunerated according to

their true productivity ✓2, type-2 agents are not forced to choose a distorted e↵ort mix,
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it must necessarily be that �2s > 0 and �2p = 0 (earning y1 while being remunerated

according to the average productivity ✓ is necessarily a dominated deviating strategy for

type-2 agents). Thus, four di↵erent scenarios are conceivable. Under the first, �2s > 0,

�2p = 0 and

(H69) T 0 �y1
�
=

�2s

�1

 
1

✓1h1

�
e1s, e

1
q

� � 1

✓2h1

�
ee2s, ee2q

�
!
ps > 0.

Under the second scenario we still have that �2s > 0, �2p = 0 but this time we have that

(H70) T 0 �y1
�
=

�2s

�1

 
h1

�
ee2s, ee2q

�

h1

�
e1s, e

1
q

� ✓
2

✓1
� 1

!
�
p2q � p1q

� ps
 

> 0.

Under the third scenario �2s > 0 and �2p > 0; in this case we have that

(H71)

T 0 �y1
�
=

"
�2s

 
h1

�
ee2s, ee2q

�

h1

�
e1s, e

1
q

� ✓
2

✓1
� 1

!
p2q � p1q
 

+ �2p

 
1

✓1h1

�
e1s, e

1
q

� � 1

✓h1 (bes, beq)

!#
ps
�1

> 0.

Under the last scenario �2s = 0 and �2p > 0; in this case we have that

(H72) T 0 �y1
�
=

�2p

�1

 
1

✓1h1

�
e1s, e

1
q

� � 1

✓h1 (bes, beq)

!
ps > 0.

I The case when both signals are observable

We turn first to formulate the maximization program associated with a MMO given

by a pooling tax equilibrium. Without loss of generality, we will assume that ps = 1.

The pooling tax equilibrium is given by the triplet (c, es, eq) which solves the following

maximization problem:

(I1) max
c,es,eq

⇥
c� (es + eqp

1
q)
⇤
,

where

c = ✓̄h(es, eq)(I2)

✓̄ = �1✓1 + �2✓2.(I3)

That is, type-1 utility is maximized by choosing e↵ort levels (quantity and quality) subject

to the constraints that workers are compensated based on average productivity and zero

tax revenues are being collected.

We turn next to formulate the maximization program associated with a constrained

e�cient allocation given by a separating tax equilibrium. The separating tax equilibrium
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is given by the two triplets (c1, e1s, e
1
q) and (c2, e2s, e

2
q), which solve the following constrained

maximization problem:

max
{(ci,eis,eiq)}i=1,2

⇥
c1 � (e1s + e1qp

1
q)
⇤

(I4)

subject to:

c1 � (e1s + e1qp
1
q) � c2 � (e2s + e2qp

1
q)(I5)

c2 � (e2s + e2qp
2
q) � c1 � (e1s + e1qp

2
q)(I6)

�1✓1h(e1s, e
1
q) + �2✓2h(e2s, e

2
q) � �1c1 + �2c2(I7)

In the separating regime, the utility of type 1 is maximized by o↵ering two di↵erent bun-

dles, where types are compensated according to their productivity, and the redistribution

is limited to the income channel. Note that the IC-constraints actually only consider

mimicking by replication, not (infeasible) o↵-equilibrium deviations. As p1q > p2q > 0,

the single-crossing property holds. Thus, as we are considering a Rawlsian welfare func-

tion, the only binding IC-constraint is the one associated with the high-skilled (type-2)

individual.

Next, we show that pooling is suboptimal, i.e., the socially optimal configuration will

be a separating allocation.

Proposition 7. Assuming that both signals are taxed, the pooling equilibrium is subop-

timal and thus predistribution is socially undesirable. Moreover, social welfare is strictly

higher compared to the case where only one signal is taxed.

Proof. Let the triplet (e⇤s, e
⇤
q, c

⇤) denote the (presumably) socially optimal pooling alloca-

tion, and consider the following alternative separating allocation, obtained as a small per-

turbation of the pooling allocation and given by the two triplets: (c1, e1s, e
1
q) and (c2, e2s, e

2
q)

where e1s = e⇤s � ", e1q = e⇤q � ", c1 = c⇤ � "(1 + p1q), where " > 0 and small; and where

e2s = e⇤s + �, e2q = e⇤q + �, c2 = c⇤ + �(1 + p2q), with � > 0 and small. It is easy to check that

since p1q > p2q, the perturbed allocation is incentive compatible, and that it preserves the

utility level of both types as in the pooling allocation.

Invoking a first-order approximation and following some algebraic manipulations, the

total e↵ect of the perturbation on the aggregate output (�Y ) is given by:

�Y = [�2✓2� � �1✓1"][h1(e
⇤
s, e

⇤
q) + h2(e

⇤
s, e

⇤
q)](I8)

where hj, j = 1, 2, denote the partial derivatives with respect to the first and second

arguments of h(·).
The corresponding total e↵ect of the perturbation on the aggregate consumption (�C)

109



is given by:

�C = �2�(1 + p2q)� �1"(1 + p1q)(I9)

Thus,

(I10) �Y ��C = �2�
⇥
✓2[h1(e

⇤
s, e

⇤
q) + h2(e

⇤
s, e

⇤
q)]� (1 + p2q)

⇤
�

�1"
⇥
✓1[h1(e

⇤
s, e

⇤
q) + h2(e

⇤
s, e

⇤
q)]� (1 + p1q)

⇤

Suppose now that  ⌘ �2� = �1". It follows that:

�Y ��C = 
⇥
(✓2 � ✓1)[h1(e

⇤
s, e

⇤
q) + h2(e

⇤
s, e

⇤
q)] + (p1q � p2q)

⇤
> 0,(I11)

where the inequality sign follows as h1 > 0, h2 > 0, > 0, ✓2 > ✓1, and p1q > p2q.

The resulting tax surplus can be refunded as a lump sum transfer, which increases the

utility of both types relative to the pooling allocation without violating the IC-constraints.

We have thus obtained a contradiction to the presumed optimality of the pooling alloca-

tion as needed.

The fact that social welfare is strictly higher relative to the case where only one

signal is taxed follows from the following three observations: (i) the social optimum when

both signals are taxed is (always) given by a separating allocation, as just shown, (ii)

the downward IC-constraint is tightened (only replication is allowed) relative to the case

where only the quantity signal is taxed, and, (iii) the upward IC-constraint never binds

(it may bind when only the quantity signal is taxed). This concludes the proof.

As anticipated, the ability to tax both signals serves to enhance redistribution. How-

ever, the interesting insight is that predistribution becomes suboptimal in contrast to the

case where only the quantity signal is subject to taxation. If the government has the

full capacity to tax both signals, then the elimination of the information rent associated

with the di↵erence in productivity between types can be achieved through the separat-

ing allocation and does not require the implementation of a pooling allocation. This is

a more e�cient way to achieve this goal and improve redistribution. The feasibility of

predistribution depends on the ability to tax signals, but the social desirability of its use

depends critically on the limited ability to tax all signals. Predistribution, which involves

large ine�ciencies, compensates for the inability to tax the quality signal directly.

Note that unlike the standard (ABC) optimal tax formulas, which usually depend on

the skill distribution, the optimal marginal tax rates for the type-1 bundle do not depend

on the productivity di↵erence between types, since both signals can be taxed directly to

eliminate the information rent of the type-2 bundle (which is undistorted, since the type-

1 IC constraint is not binding in the optimal solution). In particular, it can be shown
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(details available upon request) that the optimal wedge on the e↵ort mix chosen by type-1

agents is given by

h1

�
e1s, e

1
q

�

h2

�
e1s, e

1
q

� � ps
p1q

= �
�2
�
p1q � p2q

�

�1p1q + �2
�
p1q � p2q

�ps < 0.(I12)

J The observable signal is eq instead of es

We divide this Appendix in two parts. In part (a) we provide an intuition for the result

that the socially optimal separating tax equilibrium is not invariant to the assumption

about which of the two signals is observable by the government. In part (b) we provide

an intuition for the result that it is a priori ambiguous in which direction it is optimal to

distort the e↵ort-mix of type-1 agents under the socially optimal separating tax equilib-

rium.

Part (a) Consider the right-hand side of the (downward) IC-constraint (23), which

gives the utility attainable by type-2 agents if they behave as mimickers. The constraint

shows that, as mimickers, type-2 agents do not need to replicate all the e↵ort choices

of type-1 agents; they only need to replicate e1s, which is the choice of type-1 agents

along the e↵ort-dimension that is observable by the government. The choice of type-2

mimickers along the other e↵ort-dimension, be2q, is given by the value of eq that satisfies the

equation ✓h (e1s, eq) = y1 (see (24)), which implies that be2q < e1q (given that the isoquant

✓h (e1s, eq) = y1 is strictly below the isoquant ✓1h (e1s, eq) = y1). In a setting where

the signal observed by the government is eq instead of es, type-2 mimickers would have

instead to replicate e1q, while be2s would be given by the value of es that solves the equation

✓h
�
es, e1q

�
= y1 (implying that be2s < e1s).

Thus, for a given quadruplet
�
y1, c1, e1s, e

1
q

�
intended for type-1 agents, the utility

achievable by type-2 agents will in general di↵er depending on whether the signal observ-

able by the government is es or eq. This implies the following two possibilities. i) The

allocation
��

y1, c1, e1s, e
1
q

�
,
�
y2, c2, e2s, e

2
q

� 
, which is the socially optimal separating tax

equilibrium in a setting where the signal observed by the government is es, is not feasible,

because it violates the downward IC-constraint in a setting where the observed signal is

eq; ii) the allocation
��

y1, c1, e1s, e
1
q

�
,
�
y2, c2, e2s, e

2
q

� 
which represents the socially optimal

separating tax equilibrium in a setting where the signal observed by the government is es

is also feasible when the observed signal is eq, but does not represent the socially optimal

separating tax equilibrium in the latter setting (because the downward IC-constraint is

slack).

Part (b) Consider the following. For a given isoquant ✓1h (es, eq) = y1, assume that

type-1 agents are induced to choose the e↵ort mix (e1s, e
1
q) that satisfies the no-distortion

condition
h1(e1s,e1q)
h2(e1s,e1q)

= ps
p1q
. In a setting where the observed signal is eq, a type-2 mimicker
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must choose be2q = e1q, while be2s is set to satisfy the equation ✓h
�
es, e1q

�
= y1, (which implies

that be2s < e1s). Given that p2q < p1q, but at the same time
h1(be2s,be2q)
h2(be2s,be2q)

>
h1(e1s,e1q)
h2(e1s,e1q)

, it follows

that one cannot a priori establish whether the e↵ort-mix of type-2 mimickers is distorted

towards es (i.e.,
h1(be2s,be2q)
h2(be2s,be2q)

< ps
p2q
) or towards eq (i.e.,

h1(be2s,be2q)
h2(be2s,be2q)

> ps
p2q
).

This ambiguity is essentially the reason why it is not possible to determine once

and for all in which direction it is desirable to distort the e↵ort mix chosen by type-1

agents. Suppose for instance that it is indeed the case that when type-1 agents choose

an undistorted e↵ort mix, the e↵ort mix chosen by type-2 mimickers is distorted in the

direction of eq. Then it will be welfare enhancing to induce type-1 agents to choose an

e↵ort mix that is slightly distorted towards eq. If the distortion is small, it will have only

a second-order e↵ect on the total costs (pse1s + p1qe
1
q) borne by type-1 agents; but it will

have a first-order negative e↵ect on type-2 mimickers, increasing the total cost psbe1s+p2qe
1
q

(because the initial distortion in their e↵ort mix is exacerbated).

Finally, note that distorting the e↵ort mix chosen by type-1 agents in the direction

of eq is more likely to be desirable when the di↵erence p1q � p2q is relatively small and the

ratio h1/h2 increases rapidly when lowering es (for given eq).

K The welfare gains from predistribution

This section uses the functional form in equation (26) to illustrate the welfare gains from

predistribution. We do this by setting up the constrained nonlinear optimization problem

faced by the government using AMPL and solving it using the state-of-the-art nonlinear

optimization package, KNITRO.

K.1 The income tax regime

Given that, as we explained in Appendix H.2, the incentives underlying the decision prob-

lem of type-2 agents when they are not acting as mimickers are aligned with the incentives

underlying the social decision problem, the government’s problem can be equivalently re-

formulated as follows:

(K1) max
c1,c2,y1,y2,e2s

c1 �R1
�
y1
�

subject to the budget constraint

(K2)
X

i

�i(yi � ci) = 0,
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the upward IC-constraint

(K3) c1 �R1
�
y1
�
� c2 � pse

2
s �

✓
y2

✓2

◆ 1
� p1q
e2s
,

and the downward IC-constraints

c2 � pse
2
s �

✓
y2

✓2

◆ 1
� p2q
e2s

� c1 � eR2(y1),(K4)

c2 � pse
2
s �

✓
y2

✓2

◆ 1
� p2q
e2s

� c1 � R̂2(y1).(K5)

In the reformulated version of the government problem, we have included e2s as an artificial

control variable for the government; for this reason, we have also explicitly included the

upward IC-constraint in the government problem. Note also that we used assumption

(26) to express e2q as a function of y2 and e2s, namely e2q = (y2/✓2)
1
� /e2s.

Exploiting the assumption (26) also allows us to obtain closed-form expressions for

the government’s objective function and the right hand side of the incentive constraints

(K4)–(K5). To achieve this goal, we begin by deriving the e↵ort costs incurred by agents

who choose the point on the income tax schedule intended for them.

Choices of a truthfully reporting agent of type 1 Consider agents of type 1 who

earn the income level y1 that the government intends for them. They will choose an

e�cient mix of es and eq and solve:

(K6) min
es,eq

pses + p1qeq subject to (eseq)
� ✓1 = y1.

The optimal e↵ort choices are given by

(K7) e1s
�
y1
�
=

s✓
y1

✓1

◆1/� p1q
ps

and e1q
�
y1
�
=

s✓
y1

✓1

◆1/� ps
p1q
.

Inserting (K7) into the cost function yields

(K8) R1(y1) = ps

s✓
y1

✓1

◆1/� p1q
ps

+ p1q

s✓
y1

✓1

◆1/� ps
p1q

= 2

s✓
y1

✓1

◆1/�

psp1q.

Optimal deviating strategies for agents of type 2 Now consider the di↵erent

strategies available to type-2 agents. There are three cases to consider, depending on
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which of the two constraints (K4)–(K5) is relevant.40 These cases can be distinguished

using conditions that depend on the ratio ✓2/✓1, the relative size of the two groups (�1

and �2), and a constant defined as:

(K9) ⌦ ⌘
h�
p2q + p1q

�
/
⇣
2
q
p2qp

1
q

⌘i2�
.

Case 1: ✓2/✓1  ⌦ In this case we have that min
n
eR2(y1), R̂2(y1)

o
= eR2(y1), and

therefore only constraint (K4) is relevant. The e↵ort mix chosen by a type-2 mimicker

under its optimal deviation strategy is undistorted (satisfies eq/es = ps/p2q) and eR2(y1) =

2
q
(y1/✓2)

1
� p2qps. Thus, the relevant downward IC-constraint can be expressed as:

(K10) c2 � pse
2
s �

✓
y2

✓2

◆ 1
� p2q
e2s

� c1 � 2
q
(y1/✓2)

1
� p2qps.

Case 2: ✓/✓1 < ⌦ < ✓2/✓1 In this case, we again have min
n
eR2(y1), R̂2(y1)

o
= eR2(y1).

This time, however, type-2 mimickers must choose a distorted e↵ort mix (eq/es 6= ps/p2q)

in order to achieve separation and be paid according to their true productivity. Thus, the

relevant downward IC-constraint can be formulated as

(K11) c2 � pse
2
s �

✓
y2

✓2

◆ 1
� p2q
e2s

� c1 �
r

ps
p1q

(y1)
1
�

�
p1q � p2q

� �
1
✓2

� 1
� + 2p2q

q�
1
✓1

� 1
�

q�
1
✓1

� 1
� +

q�
1
✓1

� 1
� �

�
1
✓2

� 1
�

�

q�
1
✓1

� 1
� +

q�
1
✓1

� 1
� �

�
1
✓2

� 1
�

.

Case 3: ✓/✓1 � ⌦ In this case, it is not possible to determine unambiguously whether
eR2(y1) < R̂2(y1), eR2(y1) > R̂2(y1), or eR2(y1) = R̂2(y1). What can be established is

that the mimicking strategy with associated cost eR2(y1) necessarily requires that a type

2 mimicker chooses a distorted e↵ort mix. Thus, there are two relevant downward IC-

constraints, one given by (K11) (the one associated with the cost eR2(y1)), and the other

(associated with the cost R̂2(y1)) given by:

(K12) c2 � pse
2
s �

✓
y2

✓2

◆ 1
� p2q
e2s

� c1 � 2
q�

y1/✓̄
�1/�

psp2q.

40In our numerical example, we will vary the parameters so that all three cases are considered. The

derivations needed to distinguish between the di↵erent cases are available on request.
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K.2 Government problem, constrained e�cient allocation

We start with the separating equilibrium. In this case, denoting by an asterisk symbol

the e↵ort choices of workers in equilibrium, and by a hat symbol the quality e↵ort choice

of a mimicking type-2 worker, it follows:

(K13) ei⇤q =

✓
yi

✓i

◆1/�
1

eis
, (i = 1, 2) and êq =

✓
y1

✓̄

◆1/� 1

e1s
.

Thus, the IC-constraints (23)–(24) can be written as follows:

c1 � p1se
1
s �

✓
y1

✓1

◆1/� p1q
e1s

� c2 � p1se
2
s �

✓
y2

✓2

◆1/� p1q
e2s
,(K14)

c2 � p2se
2
s �

✓
y2

✓2

◆1/� p2q
e2s

� c1 � p2se
1
s �

✓
y1

✓̄

◆1/� p2q
e1s
.(K15)

When implementing a pooling equilibrium, IC-constraints can be neglected, and the gov-

ernment chooses (y, es) to maximize

(K16) u1 = y � p1ses + p1qbeq(y, es),

where beq(es, y) is the value of eq which solves the equation y = (eseq)� ✓̄.

K.3 Welfare gains

We fix type 2 productivity at ✓2 = 100 and compute the social welfare level of the case

with only an income tax and compare it to the social welfare level in the MMO, while

letting ✓1 vary between 1 and 100. In this way, we consider a wide range of values for the

ratio ✓1/✓2. We keep the normalization p1s = p2s = p2q = 1 and set � = 0.10, �1 = �2 = 0.5,

p1q = 1.05. We then compute the maximum achievable welfare gain from predistribution,

which is achieved at the value of ✓1 at which the di↵erence between the social welfare level

in the MMO and the social welfare level in the income tax system is greatest. We express

this maximum achievable welfare gain in equivalent-variation terms by first computing the

minimum amount of resources that must be injected into the income-tax-only case in order

to achieve the social welfare level of the MMO (by repeatedly solving the government’s

optimization program), and then dividing this number by the total output of the income-

tax-only case to obtain a measure of the welfare gain expressed as a fraction of output.

Figure 2 shows the results. As expected, we see that the MMO (given by either an

STE or a PTE, depending on which results in the highest social welfare) always dominates

the case with only an income tax. We see that it is optimal to implement a separating

allocation when ✓1 takes low and intermediate values, while the pooling allocation dom-

inates when ✓1 is relatively close to ✓2. Notice that when ✓1 is very close to 100, the
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separating allocation dominates, although it is not visible in the figure. This is a knife

edge case of no practical relevance. The maximum welfare gain from the MMO relative to

the pure income tax regime is obtained at ✓1 = 75.1, amounts to 12.44% of total output,

and is associated with the implementation of a pooling allocation.

Figure 2: The welfare gains from predistribution
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